Penalized function-on-function linear quantile regression

被引:1
|
作者
Beyaztas, Ufuk [1 ]
Shang, Han Lin [2 ]
Saricam, Semanur [1 ]
机构
[1] Marmara Univ, Dept Stat, TR-34722 Istanbul, Turkiye
[2] Macquarie Univ, Dept Actuarial Studies & Business Analyt, Sydney, NSW 2109, Australia
基金
澳大利亚研究理事会;
关键词
Functional data; Derivative-free optimization; Quantile regression; Smoothing parameter; MODEL SELECTION; DEPTH;
D O I
10.1007/s00180-024-01494-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a novel function-on-function linear quantile regression model to characterize the entire conditional distribution of a functional response for a given functional predictor. Tensor cubic B-splines expansion is used to represent the regression parameter functions, where a derivative-free optimization algorithm is used to obtain the estimates. Quadratic roughness penalties are applied to the coefficients to control the smoothness of the estimates. The optimal degree of smoothness depends on the quantile of interest. An automatic grid-search algorithm based on the Bayesian information criterion is used to estimate the optimum values of the smoothing parameters. Via a series of Monte-Carlo experiments and an empirical data analysis using Mary River flow data, we evaluate the estimation and predictive performance of the proposed method, and the results are compared favorably with several existing methods.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Function-on-Function Linear Quantile Regression
    Beyaztas, Ufuk
    Shang, Han Lin
    [J]. MATHEMATICAL MODELLING AND ANALYSIS, 2022, 27 (02) : 322 - 341
  • [2] On function-on-function linear quantile regression
    Mutis, Muge
    Beyaztas, Ufuk
    Karaman, Filiz
    Shang, Han Lin
    [J]. JOURNAL OF APPLIED STATISTICS, 2024,
  • [3] Penalized function-on-function regression
    Andrada E. Ivanescu
    Ana-Maria Staicu
    Fabian Scheipl
    Sonja Greven
    [J]. Computational Statistics, 2015, 30 : 539 - 568
  • [4] Penalized function-on-function regression
    Ivanescu, Andrada E.
    Staicu, Ana-Maria
    Scheipl, Fabian
    Greven, Sonja
    [J]. COMPUTATIONAL STATISTICS, 2015, 30 (02) : 539 - 568
  • [5] Function-on-Function Partial Quantile Regression
    Beyaztas, Ufuk
    Shang, Han Lin
    Alin, Aylin
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2022, 27 (01) : 149 - 174
  • [6] Robust penalized M-estimation for function-on-function linear regression
    Cai, Xiong
    Xue, Liugen
    Cao, Jiguo
    [J]. STAT, 2021, 10 (01):
  • [7] Function-on-Function Partial Quantile Regression
    Ufuk Beyaztas
    Han Lin Shang
    Aylin Alin
    [J]. Journal of Agricultural, Biological and Environmental Statistics, 2022, 27 : 149 - 174
  • [8] Idenifiability in penalized function-on-function regression models
    Scheipl, Fabian
    Greven, Sonja
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (01): : 495 - 526
  • [9] Statistical inference for function-on-function linear regression
    Dette, Holger
    Tang, Jiajun
    [J]. BERNOULLI, 2024, 30 (01) : 304 - 331
  • [10] Envelope Model for Function-on-Function Linear Regression
    Su, Zhihua
    Li, Bing
    Cook, Dennis
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (04) : 1624 - 1635