Penalized function-on-function linear quantile regression

被引:1
|
作者
Beyaztas, Ufuk [1 ]
Shang, Han Lin [2 ]
Saricam, Semanur [1 ]
机构
[1] Marmara Univ, Dept Stat, TR-34722 Istanbul, Turkiye
[2] Macquarie Univ, Dept Actuarial Studies & Business Analyt, Sydney, NSW 2109, Australia
基金
澳大利亚研究理事会;
关键词
Functional data; Derivative-free optimization; Quantile regression; Smoothing parameter; MODEL SELECTION; DEPTH;
D O I
10.1007/s00180-024-01494-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a novel function-on-function linear quantile regression model to characterize the entire conditional distribution of a functional response for a given functional predictor. Tensor cubic B-splines expansion is used to represent the regression parameter functions, where a derivative-free optimization algorithm is used to obtain the estimates. Quadratic roughness penalties are applied to the coefficients to control the smoothness of the estimates. The optimal degree of smoothness depends on the quantile of interest. An automatic grid-search algorithm based on the Bayesian information criterion is used to estimate the optimum values of the smoothing parameters. Via a series of Monte-Carlo experiments and an empirical data analysis using Mary River flow data, we evaluate the estimation and predictive performance of the proposed method, and the results are compared favorably with several existing methods.
引用
收藏
页数:29
相关论文
共 50 条
  • [11] Function-on-Function Linear Regression by Signal Compression
    Luo, Ruiyan
    Qi, Xin
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) : 690 - 705
  • [12] Restricted function-on-function linear regression model
    Luo, Ruiyan
    Qi, Xin
    [J]. BIOMETRICS, 2022, 78 (03) : 1031 - 1044
  • [13] Modern non-linear function-on-function regression
    Rao, Aniruddha Rajendra
    Reimherr, Matthew
    [J]. STATISTICS AND COMPUTING, 2023, 33 (06)
  • [14] Functional wavelet regression for linear function-on-function models
    Luo, Ruiyan
    Qi, Xin
    Wang, Yanhong
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (02): : 3179 - 3216
  • [15] Modern non-linear function-on-function regression
    Aniruddha Rajendra Rao
    Matthew Reimherr
    [J]. Statistics and Computing, 2023, 33
  • [16] VARIABLE SELECTION FOR MULTIPLE FUNCTION-ON-FUNCTION LINEAR REGRESSION
    Cai, Xiong
    Xue, Liugen
    Cao, Jiguo
    [J]. STATISTICA SINICA, 2022, 32 (03) : 1435 - 1465
  • [17] Additive Function-on-Function Regression
    Kim, Janet S.
    Staicu, Ana-Maria
    Maity, Arnab
    Carroll, Raymond J.
    Ruppert, David
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2018, 27 (01) : 234 - 244
  • [18] Smooth LASSO estimator for the Function-on-Function linear regression model
    Centofanti, Fabio
    Fontana, Matteo
    Lepore, Antonio
    Vantini, Simone
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 176
  • [19] Optimal Penalized Function-on-Function Regression Under a Reproducing Kernel Hilbert Space Framework
    Sun, Xiaoxiao
    Du, Pang
    Wang, Xiao
    Ma, Ping
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (524) : 1601 - 1611
  • [20] Robust Function-on-Function Regression
    Hullait, Harjit
    Leslie, David S.
    Pavlidis, Nicos G.
    King, Steve
    [J]. TECHNOMETRICS, 2021, 63 (03) : 396 - 409