Optimal Penalized Function-on-Function Regression Under a Reproducing Kernel Hilbert Space Framework

被引:37
|
作者
Sun, Xiaoxiao [1 ]
Du, Pang [2 ]
Wang, Xiao [3 ]
Ma, Ping [1 ]
机构
[1] Univ Georgia, Dept Stat, Athens, GA 30602 USA
[2] Virginia Tech, Dept Stat, Blacksburg, VA 24061 USA
[3] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
Function-on-Function regression; Minimax convergence rate; Penalized least squares; Representer theorem; Reproducing kernel Hilbert space; LINEAR-REGRESSION; RNA-SEQ; PREDICTION; MINIMAX; TOOL;
D O I
10.1080/01621459.2017.1356320
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Many scientific studies collect data where the response and predictor variables are both functions of time, location, or some other covariate. Understanding the relationship between these functional variables is a common goal in these studies. Motivated from two real-life examples, we present in this article a function-on-function regression model that can be used to analyze such kind of functional data. Our estimator of the 2D coefficient function is the optimizer of a form of penalized least squares where the penalty enforces a certain level of smoothness on the estimator. Our first result is the representer theorem which states that the exact optimizer of the penalized least squares actually resides in a data-adaptive finite-dimensional subspace although the optimization problem is defined on a function space of infinite dimensions. This theorem then allows us an easy incorporation of the Gaussian quadrature into the optimization of the penalized least squares, which can be carried out through standard numerical procedures. We also show that our estimator achieves the minimax convergence rate in mean prediction under the framework of function-on-function regression. Extensive simulation studies demonstrate the numerical advantages of our method over the existing ones, where a sparse functional data extension is also introduced. The proposed method is then applied to our motivating examples of the benchmark Canadian weather data and a histone regulation study. Supplementary materials for this article are available online.
引用
收藏
页码:1601 / 1611
页数:11
相关论文
共 50 条
  • [1] Penalized function-on-function regression
    Andrada E. Ivanescu
    Ana-Maria Staicu
    Fabian Scheipl
    Sonja Greven
    [J]. Computational Statistics, 2015, 30 : 539 - 568
  • [2] Penalized function-on-function regression
    Ivanescu, Andrada E.
    Staicu, Ana-Maria
    Scheipl, Fabian
    Greven, Sonja
    [J]. COMPUTATIONAL STATISTICS, 2015, 30 (02) : 539 - 568
  • [3] Idenifiability in penalized function-on-function regression models
    Scheipl, Fabian
    Greven, Sonja
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (01): : 495 - 526
  • [4] Penalized function-on-function linear quantile regression
    Beyaztas, Ufuk
    Shang, Han Lin
    Saricam, Semanur
    [J]. COMPUTATIONAL STATISTICS, 2024,
  • [5] Reproducing Kernel Hilbert Spaces for Penalized Regression: A Tutorial
    Nosedal-Sanchez, Alvaro
    Storlie, Curtis B.
    Lee, Thomas C. M.
    Christensen, Ronald
    [J]. AMERICAN STATISTICIAN, 2012, 66 (01): : 50 - 60
  • [6] Reproducing Kernel Hilbert Space Approach to Multiresponse Smoothing Spline Regression Function
    Lestari, Budi
    Chamidah, Nur
    Aydin, Dursun
    Yilmaz, Ersin
    [J]. SYMMETRY-BASEL, 2022, 14 (11):
  • [7] Gaussian copula function-on-scalar regression in reproducing kernel Hilbert space
    Xie, Haihan
    Kong, Linglong
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 198
  • [8] Optimal prediction for additive function-on-function regression
    Reimherr, Matthew
    Sriperumbudur, Bharath
    Taoufik, Bahaeddine
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (02): : 4571 - 4601
  • [9] Robust penalized M-estimation for function-on-function linear regression
    Cai, Xiong
    Xue, Liugen
    Cao, Jiguo
    [J]. STAT, 2021, 10 (01):
  • [10] Fast quantile regression in reproducing kernel Hilbert space
    Zheng, Songfeng
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2022, 51 (02) : 568 - 588