Idenifiability in penalized function-on-function regression models

被引:28
|
作者
Scheipl, Fabian [1 ]
Greven, Sonja [1 ]
机构
[1] Ludwig Maximillians Univ Munchen, Inst Stat, Ludwigstr 33, Munich, Germany
来源
ELECTRONIC JOURNAL OF STATISTICS | 2016年 / 10卷 / 01期
关键词
Functional data; penalized splines; PARAMETER-ESTIMATION; LINEAR-REGRESSION;
D O I
10.1214/16-EJS1123
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Regression models with functional responses and covariates constitute a powerful and increasingly important model class. However, regression with functional data poses well known and challenging problems of non-identifiability. This non-identifiability can manifest itself in arbitrarily large errors for coefficient surface estimates despite accurate predictions of the responses, thus invalidating substantial interpretations of the fitted models. We off er an accessible rephrasing of these identi fi ability issues in realistic applications of penalized linear function-on-function-regression and delimit the set of circumstances under which they are likely to occur in practice. Specifically, non-identi fi ability that persists under smoothness assumptions on the coefficient surface can occur if the functional covariate's empirical covariance has a kernel which overlaps that of the roughness penalty of the spline estimator. Extensive simulation studies validate the theoretical insights, explore the extent of the problem and allow us to evaluate their practical consequences under varying assumptions about the data generating processes. A case study illustrates the practical significance of the problem. Based on theoretical considerations and our empirical evaluation, we provide immediately applicable diagnostics for lack of identifiability and give recommendations for avoiding estimation artifacts in practice.
引用
收藏
页码:495 / 526
页数:32
相关论文
共 50 条
  • [1] Penalized function-on-function regression
    Andrada E. Ivanescu
    Ana-Maria Staicu
    Fabian Scheipl
    Sonja Greven
    [J]. Computational Statistics, 2015, 30 : 539 - 568
  • [2] Penalized function-on-function regression
    Ivanescu, Andrada E.
    Staicu, Ana-Maria
    Scheipl, Fabian
    Greven, Sonja
    [J]. COMPUTATIONAL STATISTICS, 2015, 30 (02) : 539 - 568
  • [3] Penalized function-on-function linear quantile regression
    Beyaztas, Ufuk
    Shang, Han Lin
    Saricam, Semanur
    [J]. COMPUTATIONAL STATISTICS, 2024,
  • [4] Function-on-function quadratic regression models
    Sun, Yifan
    Wang, Qihua
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 142
  • [5] Robust penalized M-estimation for function-on-function linear regression
    Cai, Xiong
    Xue, Liugen
    Cao, Jiguo
    [J]. STAT, 2021, 10 (01):
  • [6] Functional wavelet regression for linear function-on-function models
    Luo, Ruiyan
    Qi, Xin
    Wang, Yanhong
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (02): : 3179 - 3216
  • [7] Additive Function-on-Function Regression
    Kim, Janet S.
    Staicu, Ana-Maria
    Maity, Arnab
    Carroll, Raymond J.
    Ruppert, David
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2018, 27 (01) : 234 - 244
  • [8] Optimal Penalized Function-on-Function Regression Under a Reproducing Kernel Hilbert Space Framework
    Sun, Xiaoxiao
    Du, Pang
    Wang, Xiao
    Ma, Ping
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (524) : 1601 - 1611
  • [9] Robust Function-on-Function Regression
    Hullait, Harjit
    Leslie, David S.
    Pavlidis, Nicos G.
    King, Steve
    [J]. TECHNOMETRICS, 2021, 63 (03) : 396 - 409
  • [10] Function-on-Function Linear Quantile Regression
    Beyaztas, Ufuk
    Shang, Han Lin
    [J]. MATHEMATICAL MODELLING AND ANALYSIS, 2022, 27 (02) : 322 - 341