Penalized function-on-function regression

被引:91
|
作者
Ivanescu, Andrada E. [1 ]
Staicu, Ana-Maria [2 ]
Scheipl, Fabian [3 ]
Greven, Sonja [3 ]
机构
[1] Montclair State Univ, Dept Math Sci, Montclair, NJ 07043 USA
[2] N Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
[3] Univ Munich, Dept Stat, Munich, Germany
基金
美国国家科学基金会;
关键词
Functional data analysis; Functional regression model; Mixed model; Multiple functional predictors; Penalized splines; Tractography data; BAYESIAN CONFIDENCE-INTERVALS; LINEAR-REGRESSION; CORPUS-CALLOSUM; LIKELIHOOD; DIFFUSION; VARIANCE; MRI; ASSOCIATION; COEFFICIENT; PREDICTION;
D O I
10.1007/s00180-014-0548-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A general framework for smooth regression of a functional response on one or multiple functional predictors is proposed. Using the mixed model representation of penalized regression expands the scope of function-on-function regression to many realistic scenarios. In particular, the approach can accommodate a densely or sparsely sampled functional response as well as multiple functional predictors that are observed on the same or different domains than the functional response, on a dense or sparse grid, and with or without noise. It also allows for seamless integration of continuous or categorical covariates and provides approximate confidence intervals as a by-product of the mixed model inference. The proposed methods are accompanied by easy to use and robust software implemented in the pffr function of the R package refund. Methodological developments are general, but were inspired by and applied to a diffusion tensor imaging brain tractography dataset.
引用
收藏
页码:539 / 568
页数:30
相关论文
共 50 条
  • [1] Penalized function-on-function regression
    Andrada E. Ivanescu
    Ana-Maria Staicu
    Fabian Scheipl
    Sonja Greven
    [J]. Computational Statistics, 2015, 30 : 539 - 568
  • [2] Idenifiability in penalized function-on-function regression models
    Scheipl, Fabian
    Greven, Sonja
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (01): : 495 - 526
  • [3] Penalized function-on-function linear quantile regression
    Beyaztas, Ufuk
    Shang, Han Lin
    Saricam, Semanur
    [J]. COMPUTATIONAL STATISTICS, 2024,
  • [4] Robust penalized M-estimation for function-on-function linear regression
    Cai, Xiong
    Xue, Liugen
    Cao, Jiguo
    [J]. STAT, 2021, 10 (01):
  • [5] Additive Function-on-Function Regression
    Kim, Janet S.
    Staicu, Ana-Maria
    Maity, Arnab
    Carroll, Raymond J.
    Ruppert, David
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2018, 27 (01) : 234 - 244
  • [6] Optimal Penalized Function-on-Function Regression Under a Reproducing Kernel Hilbert Space Framework
    Sun, Xiaoxiao
    Du, Pang
    Wang, Xiao
    Ma, Ping
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (524) : 1601 - 1611
  • [7] Robust Function-on-Function Regression
    Hullait, Harjit
    Leslie, David S.
    Pavlidis, Nicos G.
    King, Steve
    [J]. TECHNOMETRICS, 2021, 63 (03) : 396 - 409
  • [8] Function-on-function quadratic regression models
    Sun, Yifan
    Wang, Qihua
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 142
  • [9] Function-on-Function Partial Quantile Regression
    Beyaztas, Ufuk
    Shang, Han Lin
    Alin, Aylin
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2022, 27 (01) : 149 - 174
  • [10] Function-on-Function Linear Quantile Regression
    Beyaztas, Ufuk
    Shang, Han Lin
    [J]. MATHEMATICAL MODELLING AND ANALYSIS, 2022, 27 (02) : 322 - 341