Penalized function-on-function regression

被引:91
|
作者
Ivanescu, Andrada E. [1 ]
Staicu, Ana-Maria [2 ]
Scheipl, Fabian [3 ]
Greven, Sonja [3 ]
机构
[1] Montclair State Univ, Dept Math Sci, Montclair, NJ 07043 USA
[2] N Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
[3] Univ Munich, Dept Stat, Munich, Germany
基金
美国国家科学基金会;
关键词
Functional data analysis; Functional regression model; Mixed model; Multiple functional predictors; Penalized splines; Tractography data; BAYESIAN CONFIDENCE-INTERVALS; LINEAR-REGRESSION; CORPUS-CALLOSUM; LIKELIHOOD; DIFFUSION; VARIANCE; MRI; ASSOCIATION; COEFFICIENT; PREDICTION;
D O I
10.1007/s00180-014-0548-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A general framework for smooth regression of a functional response on one or multiple functional predictors is proposed. Using the mixed model representation of penalized regression expands the scope of function-on-function regression to many realistic scenarios. In particular, the approach can accommodate a densely or sparsely sampled functional response as well as multiple functional predictors that are observed on the same or different domains than the functional response, on a dense or sparse grid, and with or without noise. It also allows for seamless integration of continuous or categorical covariates and provides approximate confidence intervals as a by-product of the mixed model inference. The proposed methods are accompanied by easy to use and robust software implemented in the pffr function of the R package refund. Methodological developments are general, but were inspired by and applied to a diffusion tensor imaging brain tractography dataset.
引用
收藏
页码:539 / 568
页数:30
相关论文
共 50 条
  • [31] A partial least squares approach for function-on-function interaction regression
    Ufuk Beyaztas
    Han Lin Shang
    [J]. Computational Statistics, 2021, 36 : 911 - 939
  • [32] Estimation and Model Selection for Non parametric Function-on-Function Regression
    Wang, Zhanfeng
    Dong, Hao
    Ma, Ping
    Wang, Yuedong
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2022, 31 (03) : 835 - 845
  • [33] OPTIMAL FUNCTION-ON-FUNCTION REGRESSION WITH INTERACTION BETWEEN FUNCTIONAL PREDICTORS
    Jin, Honghe
    Sun, Xiaoxiao
    Du, Pang
    [J]. STATISTICA SINICA, 2023, 33 (02) : 1047 - 1068
  • [34] A robust partial least squares approach for function-on-function regression
    Beyaztas, Ufuk
    Shang, Han Lin
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2022, 36 (02) : 199 - 219
  • [35] Smooth LASSO estimator for the Function-on-Function linear regression model
    Centofanti, Fabio
    Fontana, Matteo
    Lepore, Antonio
    Vantini, Simone
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 176
  • [36] Function-on-function regression for two-dimensional functional data
    Ivanescu, Andrada E.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (09) : 2656 - 2669
  • [37] Function-on-function regression for assessing production quality in industrial manufacturing
    Palumbo, Biagio
    Centofanti, Fabio
    Del Re, Francesco
    [J]. QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2020, 36 (08) : 2738 - 2753
  • [38] A partial least squares approach for function-on-function interaction regression
    Beyaztas, Ufuk
    Shang, Han Lin
    [J]. COMPUTATIONAL STATISTICS, 2021, 36 (02) : 911 - 939
  • [39] Fast implementation of partial least squares for function-on-function regression
    Zhou, Zhiyang
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2021, 185
  • [40] Adaptive smoothing spline estimator for the function-on-function linear regression model
    Centofanti, Fabio
    Lepore, Antonio
    Menafoglio, Alessandra
    Palumbo, Biagio
    Vantini, Simone
    [J]. COMPUTATIONAL STATISTICS, 2023, 38 (01) : 191 - 216