Estimation and Model Selection for Non parametric Function-on-Function Regression

被引:2
|
作者
Wang, Zhanfeng [1 ]
Dong, Hao [2 ]
Ma, Ping [3 ]
Wang, Yuedong [2 ]
机构
[1] Univ Sci & Technol China, Sch Management, Int Inst Finance, Hefei, Peoples R China
[2] Univ Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USA
[3] Univ Georgia, Dept Stat, Athens, GA 30602 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Convergence rate; Regularization; Reproducing kernel Hilbert space; Smoothing spline ANOVA;
D O I
10.1080/10618600.2022.2037434
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Regression models with a functional response and functional covariate have received significant attention recently. While various nonparametric and semiparametric models have been developed, there is an urgent need for model selection and diagnostic methods. In this article, we develop a unified framework for estimation and model selection in nonpara metric function-on-function regression. We propose a general nonparametric functional regression model with the model space constructed through smoothing spline analysis of variance (SS ANOVA). The proposed model reduces to some of the existing models when selected components in the SS ANOVA decomposition are eliminated. We propose new estimation procedures under either L-1 or L-2 penalty and show that the combination of the SS ANOVA decomposition and L-1 penalty provides powerful tools for model selection and diagnostics. We establish consistency and convergence rates for estimates of the regression function and each component in its decomposition under both the L-1 and L-2 penalties. Simulation studies and real examples show that the proposed methods perform well. Technical details and additional simulation results are available in online supplementary materials.
引用
收藏
页码:835 / 845
页数:11
相关论文
共 50 条
  • [1] Interaction Model and Model Selection for Function-on-Function Regression
    Luo, Ruiyan
    Qi, Xin
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2019, 28 (02) : 309 - 322
  • [2] A comparison of parameter estimation in function-on-function regression
    Beyaztas, Ufuk
    Shang, Han Lin
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (08) : 4607 - 4637
  • [3] VARIABLE SELECTION FOR MULTIPLE FUNCTION-ON-FUNCTION LINEAR REGRESSION
    Cai, Xiong
    Xue, Liugen
    Cao, Jiguo
    [J]. STATISTICA SINICA, 2022, 32 (03) : 1435 - 1465
  • [4] Envelope Model for Function-on-Function Linear Regression
    Su, Zhihua
    Li, Bing
    Cook, Dennis
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (04) : 1624 - 1635
  • [5] Restricted function-on-function linear regression model
    Luo, Ruiyan
    Qi, Xin
    [J]. BIOMETRICS, 2022, 78 (03) : 1031 - 1044
  • [6] Modern non-linear function-on-function regression
    Rao, Aniruddha Rajendra
    Reimherr, Matthew
    [J]. STATISTICS AND COMPUTING, 2023, 33 (06)
  • [7] Modern non-linear function-on-function regression
    Aniruddha Rajendra Rao
    Matthew Reimherr
    [J]. Statistics and Computing, 2023, 33
  • [8] A Non-linear Function-on-Function Model for Regression with Time Series Data
    Wang, Qiyao
    Wang, Haiyan
    Gupta, Chetan
    Rao, Aniruddha Rajendra
    Khorasgani, Hamed
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 232 - 239
  • [9] Additive Function-on-Function Regression
    Kim, Janet S.
    Staicu, Ana-Maria
    Maity, Arnab
    Carroll, Raymond J.
    Ruppert, David
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2018, 27 (01) : 234 - 244
  • [10] Penalized function-on-function regression
    Andrada E. Ivanescu
    Ana-Maria Staicu
    Fabian Scheipl
    Sonja Greven
    [J]. Computational Statistics, 2015, 30 : 539 - 568