Penalized function-on-function regression

被引:91
|
作者
Ivanescu, Andrada E. [1 ]
Staicu, Ana-Maria [2 ]
Scheipl, Fabian [3 ]
Greven, Sonja [3 ]
机构
[1] Montclair State Univ, Dept Math Sci, Montclair, NJ 07043 USA
[2] N Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
[3] Univ Munich, Dept Stat, Munich, Germany
基金
美国国家科学基金会;
关键词
Functional data analysis; Functional regression model; Mixed model; Multiple functional predictors; Penalized splines; Tractography data; BAYESIAN CONFIDENCE-INTERVALS; LINEAR-REGRESSION; CORPUS-CALLOSUM; LIKELIHOOD; DIFFUSION; VARIANCE; MRI; ASSOCIATION; COEFFICIENT; PREDICTION;
D O I
10.1007/s00180-014-0548-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A general framework for smooth regression of a functional response on one or multiple functional predictors is proposed. Using the mixed model representation of penalized regression expands the scope of function-on-function regression to many realistic scenarios. In particular, the approach can accommodate a densely or sparsely sampled functional response as well as multiple functional predictors that are observed on the same or different domains than the functional response, on a dense or sparse grid, and with or without noise. It also allows for seamless integration of continuous or categorical covariates and provides approximate confidence intervals as a by-product of the mixed model inference. The proposed methods are accompanied by easy to use and robust software implemented in the pffr function of the R package refund. Methodological developments are general, but were inspired by and applied to a diffusion tensor imaging brain tractography dataset.
引用
收藏
页码:539 / 568
页数:30
相关论文
共 50 条
  • [41] General Nonlinear Function-on-Function Regression via Functional Universal Approximation
    Luo, Ruiyan
    Qi, Xin
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024, 33 (02) : 578 - 587
  • [42] Adaptive smoothing spline estimator for the function-on-function linear regression model
    Fabio Centofanti
    Antonio Lepore
    Alessandra Menafoglio
    Biagio Palumbo
    Simone Vantini
    [J]. Computational Statistics, 2023, 38 : 191 - 216
  • [43] The influence function of penalized regression estimators
    Ollerer, Viktoria
    Croux, Christophe
    Alfons, Andreas
    [J]. STATISTICS, 2015, 49 (04) : 741 - 765
  • [44] Functional Fuzzy System: A Nonlinear Regression Model and Its Learning Algorithm for Function-on-Function Regression
    Ge, Dongjiao
    Zeng, Xiao-Jun
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (04) : 956 - 967
  • [45] Covariance-based low-dimensional registration for function-on-function regression
    Boschi, Tobia
    Chiaromonte, Francesca
    Secchi, Piercesare
    Li, Bing
    [J]. STAT, 2021, 10 (01):
  • [46] A Non-linear Function-on-Function Model for Regression with Time Series Data
    Wang, Qiyao
    Wang, Haiyan
    Gupta, Chetan
    Rao, Aniruddha Rajendra
    Khorasgani, Hamed
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 232 - 239
  • [47] MODELING SPIKY FUNCTIONAL DATA WITH DERIVATIVES OF SMOOTH FUNCTIONS IN FUNCTION-ON-FUNCTION REGRESSION
    Luo, Ruiyan
    Qi, Xin
    [J]. STATISTICA SINICA, 2023, 33 (02) : 819 - 850
  • [48] FUNCTION-ON-FUNCTION REGRESSION FOR THE IDENTIFICATION OF EPIGENETIC REGIONS EXHIBITING WINDOWS OF SUSCEPTIBILITY TO ENVIRONMENTAL EXPOSURES
    Zemplenyi, Michele
    Meyer, Mark J.
    Cardenas, Andres
    Hivert, Marie-France
    Rifas-Shiman, Sheryl L.
    Gibson, Heike
    Kloog, Itai
    Schwartz, Joel
    Oken, Emily
    DeMeo, Dawn L.
    Gold, Diane R.
    Coull, Brent A.
    [J]. ANNALS OF APPLIED STATISTICS, 2021, 15 (03): : 1366 - 1385
  • [49] A Function-on-Function Linear Regression Approach for Short-Term Electric Load Forecasting
    Kiani, Hashir Moheed
    Zeng, Xiao-Jun
    [J]. 2019 IEEE TEXAS POWER AND ENERGY CONFERENCE (TPEC), 2019,
  • [50] Semiparametric function-on-function quantile regression model with dynamic single-index interactions
    Zhu, Hanbing
    Zhang, Yuanyuan
    Li, Yehua
    Lian, Heng
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 182