Semiparametric function-on-function quantile regression model with dynamic single-index interactions

被引:1
|
作者
Zhu, Hanbing [1 ]
Zhang, Yuanyuan [2 ]
Li, Yehua [3 ]
Lian, Heng [4 ]
机构
[1] Anhui Univ, Sch Big Data & Stat, Hefei 230601, Peoples R China
[2] Soochow Univ, Sch Math Sci, Suzhou 215006, Peoples R China
[3] Univ Calif Riverside, Dept Stat, Riverside, CA 92521 USA
[4] City Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
基金
美国国家卫生研究院; 中国国家自然科学基金;
关键词
B-spline; Check loss minimization; Functional data; Score test; Semiparametric quantile regression; Single-index interaction; SPLINE ESTIMATION; GEE ANALYSIS; INFERENCE;
D O I
10.1016/j.csda.2023.107727
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we propose a new semiparametric function-on-function quantile regression model with time-dynamic single-index interactions. Our model is very flexible in taking into account of the nonlinear time-dynamic interaction effects of the multivariate longitudinal/functional covariates on the longitudinal response, that most existing quantile regression models for longitudinal data are special cases of our proposed model. We propose to approximate the bivariate nonparametric coefficient functions by tensor product B-splines, and employ a check loss minimization approach to estimate the bivariate coefficient functions and the index parameter vector. Under some mild conditions, we establish the asymptotic normality of the estimated single-index coefficients using projection orthogonalization technique, and obtain the convergence rates of the estimated bivariate coefficient functions. Furthermore, we propose a score test to examine whether there exist interaction effects between the covariates. The finite sample performance of the proposed method is illustrated by Monte Carlo simulations and an empirical data analysis.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Function-on-Function Partial Quantile Regression
    Beyaztas, Ufuk
    Shang, Han Lin
    Alin, Aylin
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2022, 27 (01) : 149 - 174
  • [2] Function-on-Function Linear Quantile Regression
    Beyaztas, Ufuk
    Shang, Han Lin
    [J]. MATHEMATICAL MODELLING AND ANALYSIS, 2022, 27 (02) : 322 - 341
  • [3] On function-on-function linear quantile regression
    Mutis, Muge
    Beyaztas, Ufuk
    Karaman, Filiz
    Shang, Han Lin
    [J]. JOURNAL OF APPLIED STATISTICS, 2024,
  • [4] Function-on-Function Partial Quantile Regression
    Ufuk Beyaztas
    Han Lin Shang
    Aylin Alin
    [J]. Journal of Agricultural, Biological and Environmental Statistics, 2022, 27 : 149 - 174
  • [5] Penalized function-on-function linear quantile regression
    Beyaztas, Ufuk
    Shang, Han Lin
    Saricam, Semanur
    [J]. COMPUTATIONAL STATISTICS, 2024,
  • [6] Quantile regression for the single-index coefficient model
    Zhao, Weihua
    Lian, Heng
    Liang, Hua
    [J]. BERNOULLI, 2017, 23 (03) : 1997 - 2027
  • [7] Single-index quantile regression
    Wu, Tracy Z.
    Yu, Keming
    Yu, Yan
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (07) : 1607 - 1621
  • [8] Bayesian composite quantile regression for the single-index model
    Yuan, Xiaohui
    Xiang, Xuefei
    Zhang, Xinran
    [J]. PLOS ONE, 2023, 18 (05):
  • [9] Quantile regression and variable selection for the single-index model
    Lv, Yazhao
    Zhang, Riquan
    Zhao, Weihua
    Liu, Jicai
    [J]. JOURNAL OF APPLIED STATISTICS, 2014, 41 (07) : 1565 - 1577
  • [10] A SINGLE-INDEX QUANTILE REGRESSION MODEL AND ITS ESTIMATION
    Kong, Efang
    Xia, Yingcun
    [J]. ECONOMETRIC THEORY, 2012, 28 (04) : 730 - 768