On function-on-function linear quantile regression

被引:0
|
作者
Mutis, Muge [1 ]
Beyaztas, Ufuk [2 ]
Karaman, Filiz [1 ]
Shang, Han Lin [3 ]
机构
[1] Yildiz Tech Univ, Dept Stat, TR-34220 Esenler Istanbul, Turkiye
[2] Marmara Univ, Dept Stat, Esenler Istanbul, Turkiye
[3] Macquarie Univ, Dept Actuarial Studies & Business Analyt, Sydney, NSW, Australia
关键词
Basis expansion functions; function-on-function linear quantile regression; functional partial least squares regression; quantile covariance; quantile regression; PRINCIPAL COMPONENT REGRESSION;
D O I
10.1080/02664763.2024.2395960
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present two innovative functional partial quantile regression algorithms designed to accurately and efficiently estimate the regression coefficient function within the function-on-function linear quantile regression model. Our algorithms utilize functional partial quantile regression decomposition to effectively project the infinite-dimensional response and predictor variables onto a finite-dimensional space. Within this framework, the partial quantile regression components are approximated using a basis expansion approach. Consequently, we approximate the infinite-dimensional function-on-function linear quantile regression model using a multivariate quantile regression model constructed from these partial quantile regression components. To evaluate the efficacy of our proposed techniques, we conduct a series of Monte Carlo experiments and analyze an empirical dataset, demonstrating superior performance compared to existing methods in finite-sample scenarios. Our techniques have been implemented in the ffpqr package in .
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Adaptive smoothing spline estimator for the function-on-function linear regression model
    Centofanti, Fabio
    Lepore, Antonio
    Menafoglio, Alessandra
    Palumbo, Biagio
    Vantini, Simone
    [J]. COMPUTATIONAL STATISTICS, 2023, 38 (01) : 191 - 216
  • [22] Locally Sparse Function-on-Function Regression
    Bernardi, Mauro
    Canale, Antonio
    Stefanucci, Marco
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (03) : 985 - 999
  • [23] Adaptive smoothing spline estimator for the function-on-function linear regression model
    Fabio Centofanti
    Antonio Lepore
    Alessandra Menafoglio
    Biagio Palumbo
    Simone Vantini
    [J]. Computational Statistics, 2023, 38 : 191 - 216
  • [24] Robust function-on-function interaction regression
    Beyaztas, Ufuk
    Shang, Han Lin
    Mandal, Abhijit
    [J]. STATISTICAL MODELLING, 2023,
  • [25] A Non-linear Function-on-Function Model for Regression with Time Series Data
    Wang, Qiyao
    Wang, Haiyan
    Gupta, Chetan
    Rao, Aniruddha Rajendra
    Khorasgani, Hamed
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 232 - 239
  • [26] Idenifiability in penalized function-on-function regression models
    Scheipl, Fabian
    Greven, Sonja
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (01): : 495 - 526
  • [27] Optimal prediction for additive function-on-function regression
    Reimherr, Matthew
    Sriperumbudur, Bharath
    Taoufik, Bahaeddine
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (02): : 4571 - 4601
  • [28] Function-on-function regression with thousands of predictive curves
    Qi, Xin
    Luo, Ruiyan
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 163 : 51 - 66
  • [29] A comparison of parameter estimation in function-on-function regression
    Beyaztas, Ufuk
    Shang, Han Lin
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (08) : 4607 - 4637
  • [30] A Function-on-Function Linear Regression Approach for Short-Term Electric Load Forecasting
    Kiani, Hashir Moheed
    Zeng, Xiao-Jun
    [J]. 2019 IEEE TEXAS POWER AND ENERGY CONFERENCE (TPEC), 2019,