BOUNDEDNESS IN LOGISTIC KELLER-SEGEL MODELS WITH NONLINEAR DIFFUSION AND SENSITIVITY FUNCTIONS

被引:2
|
作者
Wang, Qi [1 ]
Yang, Jingyue [1 ]
Yu, Feng [1 ,2 ]
机构
[1] Southwestern Univ Finance & Econ, Dept Math, 555 Liutai Ave, Chengdu 611130, Sichuan, Peoples R China
[2] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
基金
中国国家自然科学基金;
关键词
Chemotaxis; nonlinear diffusion; global existence; boundedness; logistic growth; PARABOLIC-PARABOLIC TYPE; GLOBAL EXISTENCE; SYSTEM; CHEMOTAXIS; FINITE; TIME;
D O I
10.3934/dcds.2017216
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following fully parabolic Keller-Segel system {u(t) = del center dot(D(u)del u - S(u)del v) - u(1-u(gamma)), x is an element of Omega, t>0, v(t) = Delta v - v+u, x is an element of Omega, t>0, partial derivative u/partial derivative nu = partial derivative u/partial derivative nu = 0, x is an element of partial derivative Omega, t>0 over a multi dimensional bounded domain Q C R-N, N >= 2. Here D(u) and S(u) are smooth functions satisfying: D(0) > 0, D(u) >= K1u(m1), and S(u) <= K(2)u(m2), for all u >= 0, for some constants K-i is an element of R+ , m(i) is an element of R, i = 1, 2. It is proved that, when the parameter pair (mi, m2) lies in some specific regions, the system admits global classical solutions and they are uniformly bounded in time. We cover and extend [m(1), m(2)], in particular when N >= 3 and gamma >= 1, and [i, 29] when m(1)> gamma- 2/N if gamma is an element of(0,1) or m(1) > gamma-4/N+2 if gamma is an element of[1,infinity). Moreover, according to our results, the index 2/N is, in contrast to the model without cellular growth, no longer critical to the global existence or collapse of this system.
引用
收藏
页码:5021 / 5036
页数:16
相关论文
共 50 条
  • [1] BOUNDEDNESS IN QUASILINEAR KELLER-SEGEL EQUATIONS WITH NONLINEAR SENSITIVITY AND LOGISTIC SOURCE
    Li, Xie
    Xiang, Zhaoyin
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (08) : 3503 - 3531
  • [2] GLOBAL BOUNDEDNESS OF SOLUTIONS TO A KELLER-SEGEL SYSTEM WITH NONLINEAR SENSITIVITY
    Yu, Hao
    Wang, Wei
    Zheng, Sining
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (04): : 1317 - 1327
  • [3] BOUNDEDNESS OF SOLUTIONS TO A FULLY PARABOLIC KELLER-SEGEL SYSTEM WITH NONLINEAR SENSITIVITY
    Yu, Hao
    Wang, Wei
    Zheng, Sining
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (04): : 1635 - 1644
  • [4] BOUNDEDNESS AND HOMOGENEOUS ASYMPTOTICS FOR A FRACTIONAL LOGISTIC KELLER-SEGEL EQUATIONS
    Burczak, Jan
    Granero-Belinchon, Rafael
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (02): : 139 - 164
  • [5] Boundedness in a quasilinear fully parabolic Keller-Segel system with logistic source
    Zhang, Qingshan
    Li, Yuxiang
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (05): : 2473 - 2484
  • [6] Boundedness in a quasilinear fully parabolic Keller-Segel system with logistic source
    Wang, Yifu
    Liu, Ji
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 38 : 113 - 130
  • [7] Global boundedness in a Keller-Segel system with flux limitation and logistic source
    Zhang, Wenji
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 527 (02)
  • [8] Global generalized solutions to a Keller-Segel system with nonlinear diffusion and singular sensitivity
    Yan, Jianlu
    Li, Yuxiang
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 176 : 288 - 302
  • [9] Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with logistic source
    Cao, Xinru
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (01) : 181 - 188
  • [10] Pattern Formation in Keller-Segel Chemotaxis Models with Logistic Growth
    Jin, Ling
    Wang, Qi
    Zhang, Zengyan
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (02):