Boundedness in a quasilinear fully parabolic Keller-Segel system with logistic source

被引:14
|
作者
Wang, Yifu [1 ,2 ]
Liu, Ji [1 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Beijing Key Lab MCAACI, Beijing 100081, Peoples R China
关键词
Chemotaxis; Quasilinear; Boundedness; Logistic source; TIME BLOW-UP; WEAK GLOBAL-SOLUTIONS; CHEMOTAXIS-SYSTEM; EXISTENCE; BEHAVIOR;
D O I
10.1016/j.nonrwa.2017.04.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the quasilinear chemotaxis system {u(t) = del . (D(u)del u) - del . (S(u)del v) + f(u), x is an element of Omega, t > 0, (*) v(t) = del v - v + u, x is an element of Omega, t > 0 (*) in a bounded domain Omega subset of R-n (n >= 2) under zero -flux boundary conditions, where the nonlinearities D, S is an element of C-2 ([0, infinity)) are supposed to generalize the prototypes D(u) = C-D (u + 1)(m-1) and S(u) = C(S)u(u +1)(q-1) with C-D, C-S > 0 and m,q is an element of R, and f is an element of C-1 ([0, infinity)) satisfies f(u) <= r bu(gamma) with r >= 0, b > 0 and gamma > 1. It is shown that if q <{max {m + 2/n-1, m + gamma/2-n - 1/n} for 1 < gamma <= n + 2/n, max {m + 2 gamma/n + 2-1, m/2 + gamma(n + 4)/2(n + 2)-1} for n + 2/n < gamma < n + 2/2, max {m + 2/n - n + 2/n gamma, m/2 + gamma(n + 4)/2(n + 2)-1} for n + 2/2 <= gamma < n + 2, max {m + 1/n, m + gamma/2} for gamma >= n + 2, then (*) unique globally bounded classical solution. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:113 / 130
页数:18
相关论文
共 50 条