BOUNDEDNESS IN LOGISTIC KELLER-SEGEL MODELS WITH NONLINEAR DIFFUSION AND SENSITIVITY FUNCTIONS

被引:2
|
作者
Wang, Qi [1 ]
Yang, Jingyue [1 ]
Yu, Feng [1 ,2 ]
机构
[1] Southwestern Univ Finance & Econ, Dept Math, 555 Liutai Ave, Chengdu 611130, Sichuan, Peoples R China
[2] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
基金
中国国家自然科学基金;
关键词
Chemotaxis; nonlinear diffusion; global existence; boundedness; logistic growth; PARABOLIC-PARABOLIC TYPE; GLOBAL EXISTENCE; SYSTEM; CHEMOTAXIS; FINITE; TIME;
D O I
10.3934/dcds.2017216
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following fully parabolic Keller-Segel system {u(t) = del center dot(D(u)del u - S(u)del v) - u(1-u(gamma)), x is an element of Omega, t>0, v(t) = Delta v - v+u, x is an element of Omega, t>0, partial derivative u/partial derivative nu = partial derivative u/partial derivative nu = 0, x is an element of partial derivative Omega, t>0 over a multi dimensional bounded domain Q C R-N, N >= 2. Here D(u) and S(u) are smooth functions satisfying: D(0) > 0, D(u) >= K1u(m1), and S(u) <= K(2)u(m2), for all u >= 0, for some constants K-i is an element of R+ , m(i) is an element of R, i = 1, 2. It is proved that, when the parameter pair (mi, m2) lies in some specific regions, the system admits global classical solutions and they are uniformly bounded in time. We cover and extend [m(1), m(2)], in particular when N >= 3 and gamma >= 1, and [i, 29] when m(1)> gamma- 2/N if gamma is an element of(0,1) or m(1) > gamma-4/N+2 if gamma is an element of[1,infinity). Moreover, according to our results, the index 2/N is, in contrast to the model without cellular growth, no longer critical to the global existence or collapse of this system.
引用
收藏
页码:5021 / 5036
页数:16
相关论文
共 50 条
  • [41] Spatial pattern formation in the Keller-Segel Model with a logistic source
    Fu, Shengmao
    Liu, Ji
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (03) : 403 - 417
  • [42] Chemotaxis effect vs. logistic damping on boundedness in the 2-D minimal Keller-Segel model
    Jin, Hai-Yang
    Xiang, Tian
    [J]. COMPTES RENDUS MATHEMATIQUE, 2018, 356 (08) : 875 - 885
  • [43] A new result for global existence and boundedness of solutions to a parabolic-parabolic Keller-Segel system with logistic source
    Zheng, Jiashan
    Li, YanYan
    Bao, Gui
    Zou, Xinhua
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 462 (01) : 1 - 25
  • [44] SINGULAR CONVERGENCE OF NONLINEAR HYPERBOLIC CHEMOTAXIS SYSTEMS TO KELLER-SEGEL TYPE MODELS
    Di Francesco, Marco
    Donatelli, Donatella
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2010, 13 (01): : 79 - 100
  • [45] From a multiscale derivation of nonlinear cross-diffusion models to Keller-Segel models in a Navier-Stokes fluid
    Bellomo, N.
    Bellouquid, A.
    Chouhad, N.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2016, 26 (11): : 2041 - 2069
  • [46] Classical Electrodynamics and Green Functions with the Keller-Segel Equation
    Nieto-Chaupis, Huber
    [J]. 2020 IEEE 20TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2020), 2020, : 185 - 189
  • [47] Lσ-MEASURE CRITERIA FOR BOUNDEDNESS IN A QUASILINEAR PARABOLIC-PARABOLIC KELLER-SEGEL SYSTEM WITH SUPERCRITICAL SENSITIVITY
    Ding, Mengyao
    Zhao, Xiangdong
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (10): : 5297 - 5315
  • [48] The fast signal diffusion limit in a Keller-Segel system
    Mizukami, Masaaki
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 472 (02) : 1313 - 1330
  • [49] Lγ-MEASURE CRITERIA FOR BOUNDEDNESS IN A QUASILINEAR PARABOLIC-ELLIPTIC KELLER-SEGEL SYSTEM WITH SUPERCRITICAL SENSITIVITY
    Ding, Mengyao
    Zheng, Sining
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (07): : 2971 - 2988
  • [50] A NONLINEAR ATTRACTION-REPULSION KELLER-SEGEL MODEL WITH DOUBLE SUBLINEAR ABSORPTIONS: CRITERIA TOWARD BOUNDEDNESS
    Chiyo, Yutaro
    Frassu, Silvia
    Viglialoro, Giuseppe
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (06) : 1783 - 1809