BOUNDEDNESS AND HOMOGENEOUS ASYMPTOTICS FOR A FRACTIONAL LOGISTIC KELLER-SEGEL EQUATIONS

被引:13
|
作者
Burczak, Jan [1 ,2 ]
Granero-Belinchon, Rafael [3 ]
机构
[1] Polish Acad Sci, Inst Math, Sniadeckich 8, PL-00656 Warsaw, Poland
[2] Univ Oxford, Math Inst, OxPDE, Oxford, England
[3] Univ Cantabria, Dept Matemat Estadist & Computac, Avda Castros S-N, Santander, Spain
来源
关键词
Keller-Segel system; fractional dissipation; logistic source; global-in-time smoothness; boundedness; homogenous asymptotics; PARABOLIC CHEMOTAXIS SYSTEM; GLOBAL EXISTENCE; NONLINEAR STABILITY; CONSTANT EQUILIBRIA; TRAVELING-WAVES; MODEL; DIFFUSION; AGGREGATION; TIME; DYNAMICS;
D O I
10.3934/dcdss.2020008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a d-dimensional (d = 1; 2) parabolic-elliptic Keller-Segel equation with a logistic forcing and a fractional diffusion of order alpha epsilon (0, 2). We prove uniform in time boundedness of its solution in the supercritical range alpha > d (1 - c), where c is an explicit constant depending on parameters of our problem. Furthermore, we establish sufficient conditions for vertical bar vertical bar u(t) - u(infinity)vertical bar vertical bar L-infinity -> 0, where u(infinity) 1 is the only nontrivial homogeneous solution. Finally, we provide a uniqueness result.
引用
收藏
页码:139 / 164
页数:26
相关论文
共 50 条
  • [1] BOUNDEDNESS IN QUASILINEAR KELLER-SEGEL EQUATIONS WITH NONLINEAR SENSITIVITY AND LOGISTIC SOURCE
    Li, Xie
    Xiang, Zhaoyin
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (08) : 3503 - 3531
  • [2] Boundedness in a quasilinear fully parabolic Keller-Segel system with logistic source
    Zhang, Qingshan
    Li, Yuxiang
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (05): : 2473 - 2484
  • [3] Boundedness in a quasilinear fully parabolic Keller-Segel system with logistic source
    Wang, Yifu
    Liu, Ji
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 38 : 113 - 130
  • [4] Global boundedness in a Keller-Segel system with flux limitation and logistic source
    Zhang, Wenji
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 527 (02)
  • [5] BOUNDEDNESS IN LOGISTIC KELLER-SEGEL MODELS WITH NONLINEAR DIFFUSION AND SENSITIVITY FUNCTIONS
    Wang, Qi
    Yang, Jingyue
    Yu, Feng
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (09) : 5021 - 5036
  • [6] The fractional Keller-Segel model
    Escudero, Carlos
    [J]. NONLINEARITY, 2006, 19 (12) : 2909 - 2918
  • [7] Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with logistic source
    Cao, Xinru
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (01) : 181 - 188
  • [8] Global Boundedness in a Logarithmic Keller-Segel System
    Liu, Jinyang
    Tian, Boping
    Wang, Deqi
    Tang, Jiaxin
    Wu, Yujin
    [J]. MATHEMATICS, 2023, 11 (12)
  • [9] On the Fractional View Analysis of Keller-Segel Equations with Sensitivity Functions
    Liu, Haobin
    Khan, Hassan
    Shah, Rasool
    Alderremy, A. A.
    Aly, Shaban
    Baleanu, Dumitru
    [J]. COMPLEXITY, 2020, 2020
  • [10] Boundedness in a quasilinear fully parabolic Keller-Segel system of higher dimension with logistic source
    Yang, Cibing
    Cao, Xinru
    Jiang, Zhaoxin
    Zheng, Sining
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 430 (01) : 585 - 591