The fractional Keller-Segel model

被引:105
|
作者
Escudero, Carlos [1 ]
机构
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
关键词
D O I
10.1088/0951-7715/19/12/010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Keller-Segel model is a system of partial differential equations modelling chemotactic aggregation in cellular systems. This model has blowing-up solutions for large enough initial conditions in dimensions d >= 2, but all the solutions are regular in one dimension, a mathematical fact that crucially affects the patterns that can form in the biological system. One of the strongest assumptions of the Keller-Segel model is the diffusive character of the cellular motion, known to be false in many situations. We extend this model to such situations in which the cellular dispersal is better modelled by a fractional operator. We analyse this fractional Keller-Segel model and find that all solutions are again globally bounded in time in one dimension. This fact shows the robustness of the main biological conclusions obtained from the Keller-Segel model.
引用
收藏
页码:2909 / 2918
页数:10
相关论文
共 50 条
  • [1] A new analysis for the Keller-Segel model of fractional order
    Kumar, Sunil
    Kumar, Amit
    Argyros, Ioannis K.
    NUMERICAL ALGORITHMS, 2017, 75 (01) : 213 - 228
  • [2] On the time-fractional Keller-Segel model for chemotaxis
    Cuevas, Claudio
    Silva, Clessius
    Soto, Herme
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (02) : 769 - 798
  • [3] A new analysis for the Keller-Segel model of fractional order
    Sunil Kumar
    Amit Kumar
    Ioannis K. Argyros
    Numerical Algorithms, 2017, 75 : 213 - 228
  • [4] The stability of the Keller-Segel model
    Solis, FJ
    Cortés, JC
    Cardenas, OJ
    MATHEMATICAL AND COMPUTER MODELLING, 2004, 39 (9-10) : 973 - 979
  • [5] Beyond the Keller-Segel model
    Romanczuk, P.
    Erdmann, U.
    Engel, H.
    Schimansky-Geier, L.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2008, 157 : 61 - 77
  • [6] Similarity Solutions for Keller-Segel model with fractional diffusion of cells
    Ray, Santanu Saha
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (10) : 8379 - 8396
  • [7] Fractional semilinear Neumann problems arising from a fractional Keller-Segel model
    Stinga, Pablo Raul
    Volzone, Bruno
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (01) : 1009 - 1042
  • [8] Solvability of the fractional hyperbolic Keller-Segel system
    Huaroto, Gerardo
    Neves, Wladimir
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 74
  • [9] Analysis of the Keller-Segel Model with a Fractional Derivative without Singular Kernel
    Atangana, Abdon
    Alkahtani, Badr Saad T.
    ENTROPY, 2015, 17 (06) : 4439 - 4453
  • [10] Chemotactic collapse for the Keller-Segel model
    Herrero, MA
    Velazquez, JJL
    JOURNAL OF MATHEMATICAL BIOLOGY, 1996, 35 (02) : 177 - 194