The fractional Keller-Segel model

被引:105
|
作者
Escudero, Carlos [1 ]
机构
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
关键词
D O I
10.1088/0951-7715/19/12/010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Keller-Segel model is a system of partial differential equations modelling chemotactic aggregation in cellular systems. This model has blowing-up solutions for large enough initial conditions in dimensions d >= 2, but all the solutions are regular in one dimension, a mathematical fact that crucially affects the patterns that can form in the biological system. One of the strongest assumptions of the Keller-Segel model is the diffusive character of the cellular motion, known to be false in many situations. We extend this model to such situations in which the cellular dispersal is better modelled by a fractional operator. We analyse this fractional Keller-Segel model and find that all solutions are again globally bounded in time in one dimension. This fact shows the robustness of the main biological conclusions obtained from the Keller-Segel model.
引用
收藏
页码:2909 / 2918
页数:10
相关论文
共 50 条
  • [21] Existence and asymptotic behaviour for the time-fractional Keller-Segel model for chemotaxis
    Azevedo, Joelma
    Cuevas, Claudio
    Henriquez, Erwin
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (03) : 462 - 480
  • [22] Blowup of solutions to generalized Keller-Segel model
    Biler, Piotr
    Karch, Grzegorz
    JOURNAL OF EVOLUTION EQUATIONS, 2010, 10 (02) : 247 - 262
  • [23] New numerical method and application to Keller-Segel model with fractional order derivative
    Atangana, Abdon
    Alqahtani, Rubayyi T.
    CHAOS SOLITONS & FRACTALS, 2018, 116 : 14 - 21
  • [24] ON BLOWUP DYNAMICS IN THE KELLER-SEGEL MODEL OF CHEMOTAXIS
    Dejak, S. I.
    Egli, D.
    Lushnikov, P. M.
    Sigal, I. M.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2014, 25 (04) : 547 - 574
  • [25] Exact solutions of the simplified Keller-Segel model
    Cherniha, Roman
    Didovych, Maksym
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (11) : 2960 - 2971
  • [26] On convergence to equilibria for the Keller-Segel chemotaxis model
    Feireisl, Eduard
    Laurencot, Philippe
    Petzeltova, Hana
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 236 (02) : 551 - 569
  • [27] Propagation of chaos for a subcritical Keller-Segel model
    Godinho, David
    Quininao, Cristobal
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (03): : 965 - 992
  • [28] Pattern formation (I): The Keller-Segel model
    Guo, Yan
    Hwang, Hyung Ju
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (07) : 1519 - 1530
  • [29] On the fractional doubly parabolic Keller-Segel system modelling chemotaxis
    Bezerra, Mario
    Cuevas, Claudio
    Silva, Clessius
    Soto, Herme
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (09) : 1827 - 1874
  • [30] On the well-posedness for Keller-Segel system with fractional diffusion
    Wu, Gang
    Zheng, Xiaoxin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (14) : 1739 - 1750