BOUNDEDNESS OF SOLUTIONS TO A FULLY PARABOLIC KELLER-SEGEL SYSTEM WITH NONLINEAR SENSITIVITY

被引:5
|
作者
Yu, Hao [1 ]
Wang, Wei [1 ]
Zheng, Sining [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Keller-Segel system; boundedness; nonlinear sensitivity; FINITE-TIME BLOWUP;
D O I
10.3934/dcdsb.2017078
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the global boundedness of solutions to a fully parabolic Keller-Segel system u(t) = Delta u-del(u(alpha)del v), v(t) = Delta v-v+u under non-flux boundary conditions in a smooth bounded domain Omega subset of R-n. The case of alpha >= max{1,2/n} with n >= 1 was considered in a previous paper of the authors [Global boundedness of solutions to a Keller-Segel system with nonlinear sensitivity, Discrete Contin. Dyn. Syst. B, 21 (2016), 1317-1327]. In the present paper we prove for the other case alpha epsilon (2/3,1) that if parallel to u(0)parallel to(Ln alpha/2(Omega)) and parallel to del v(0)parallel to(Ln alpha(Omega)) are small enough with n >= 3, then the solutions are globally bounded with both u and v decaying to the same constant steady (u) over bar (0) = 1/|Omega| integral u(0)(x)dx exponentially in the L-infinity-norm as t -> infinity. Moreover, the above conclusions still hold for all alpha >= 2 and n >= 1, provided parallel to u(0)parallel to(Ln alpha-n(Omega)) and parallel to del v(0)parallel to(L infinity(Omega)) sufficiently small.
引用
收藏
页码:1635 / 1644
页数:10
相关论文
共 50 条
  • [1] GLOBAL BOUNDEDNESS OF SOLUTIONS TO A KELLER-SEGEL SYSTEM WITH NONLINEAR SENSITIVITY
    Yu, Hao
    Wang, Wei
    Zheng, Sining
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (04): : 1317 - 1327
  • [2] Boundedness in a quasilinear fully parabolic Keller-Segel system with logistic source
    Zhang, Qingshan
    Li, Yuxiang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (05): : 2473 - 2484
  • [3] Boundedness in a quasilinear fully parabolic Keller-Segel system with logistic source
    Wang, Yifu
    Liu, Ji
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 38 : 113 - 130
  • [4] Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity
    Tao, Youshan
    Winkler, Michael
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (01) : 692 - 715
  • [5] Boundedness of solutions to the critical fully parabolic quasilinear one-dimensional Keller-Segel system
    Bieganowski, Bartosz
    Cieslak, Tomasz
    Fujie, Kentarou
    Senba, Takasi
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (04) : 724 - 732
  • [6] Boundedness of solutions to a quasilinear parabolic-parabolic Keller-Segel system with a logistic source
    Zheng, Jiashan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 431 (02) : 867 - 888
  • [7] Boundedness in a quasilinear fully parabolic Keller-Segel system of higher dimension with logistic source
    Yang, Cibing
    Cao, Xinru
    Jiang, Zhaoxin
    Zheng, Sining
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 430 (01) : 585 - 591
  • [8] Global Boundedness of the Fully Parabolic Keller-Segel System with Signal-Dependent Motilities
    Zhi-An Wang
    Jiashan Zheng
    Acta Applicandae Mathematicae, 2021, 171
  • [9] Global Boundedness of the Fully Parabolic Keller-Segel System with Signal-Dependent Motilities
    Wang, Zhi-An
    Zheng, Jiashan
    ACTA APPLICANDAE MATHEMATICAE, 2021, 171 (01)
  • [10] BOUNDEDNESS IN A QUASILINEAR FULLY PARABOLIC KELLER-SEGEL SYSTEM VIA MAXIMAL SOBOLEV REGULARITY
    Ishida, Sachiko
    Yokota, Tomomi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (02): : 211 - 232