Global generalized solutions to a Keller-Segel system with nonlinear diffusion and singular sensitivity

被引:19
|
作者
Yan, Jianlu [1 ]
Li, Yuxiang [1 ]
机构
[1] Southeast Univ, Sch Math, Inst Appl Math, Nanjing 211189, Jiangsu, Peoples R China
关键词
Keller-Segel system; Nonlinear diffusion; Singular sensitivity; Global generalized solutions; PARABOLIC CHEMOTAXIS SYSTEM; REINFORCED RANDOM-WALKS; TRAVELING-WAVES; SIGNAL ABSORPTION; MODEL; STABILITY; EQUATIONS; ANGIOGENESIS; BOUNDEDNESS; COLLAPSE;
D O I
10.1016/j.na.2018.06.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the chemotaxis system with nonlinear diffusion and singular sensitivity { u(t) = Delta u(m) - del (u/v del(v)), x is an element of Omega, t > 0, v(t )= Delta v - uv, x is an element of Omega, t > 0, partial derivative u/partial derivative v = partial derivative u/partial derivative v = 0, x is an element of Omega, t > 0, u(x, 0) = u(0)(x), v(x,0) = v(0)(x), x is an element of Omega in a smooth bounded domain Omega subset of R-n, n >= 2. In this work it is shown that for all reasonably regular initial data u(0) >= 0 and v(0) > 0, the corresponding Neumann initial-boundary value problem possesses a global generalized solution provided that m > 1 + n-2/2n. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:288 / 302
页数:15
相关论文
共 50 条