Scalable quantum computing in diamond

被引:0
|
作者
Hemmer, Philip [1 ]
Wrachtrup, Jerog [2 ]
Jelezko, Fedor [2 ]
Tamarat, Philippe [3 ]
Prawer, Steven [4 ]
Lukin, Mikhail [5 ]
机构
[1] Texas A&M Univ, Dept Elect Engn, College Stn, TX 77843 USA
[2] Univ Stuttgart, Inst Phys, Stuttgart, Germany
[3] Univ Bordeaux 1, F-33405 Talence, France
[4] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia
[5] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
关键词
quantum computing; quantum repeaters; diamond; nitrogen vacancy;
D O I
10.1117/12.716388
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Recent progress toward the development of scalable quantum computers based on nitrogen-vacancy (NV) color centers in diamond will be described. Scaling is accomplished through the long-range entanglement of few-qubit processing nodes using photons. Local operations within each processing node will be accomplished using electronically switchable dipole-dipole interactions. Significant progress has been made in the control of the optical transitions. enabling us to reach the level required to attempt long-range entanglement. In the meantime, long-term storage and two-qubit operations have been demonstrated using magnetic dipole-dipole coupling to proximal spins that are not nearest neighbors. Significantly, all the processing node demonstration were been done at room temperature where spin lifetimes were found to be exceptionally long.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] SUFFICIENT CONDITION ON NOISE CORRELATIONS FOR SCALABLE QUANTUM COMPUTING
    Preskill, John
    [J]. QUANTUM INFORMATION & COMPUTATION, 2013, 13 (3-4) : 181 - 194
  • [32] Utilizing encoding in scalable linear optics quantum computing
    Hayes, AJF
    Gilchrist, A
    Myers, CR
    Ralph, TC
    [J]. JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2004, 6 (12) : 533 - 541
  • [33] Scalable Quantum Computing Infrastructure Based on Superconducting Electronics
    Mukhanov, O.
    Kirichenko, A.
    Howington, C.
    Walter, J.
    Hutchings, M.
    Vernik, I.
    Yohannes, D.
    Dodge, K.
    Ballard, A.
    Plourde, B. L. T.
    Opremcak, A.
    Liu, C. -H.
    McDermott, R.
    [J]. 2019 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2019,
  • [34] Advances and opportunities in materials science for scalable quantum computing
    Vincenzo Lordi
    John M. Nichol
    [J]. MRS Bulletin, 2021, 46 : 589 - 595
  • [35] Semiconductor spin qubits - A scalable platform for quantum computing?
    Bluhm, Hendrik
    Schreiber, Lars R.
    [J]. 2019 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2019,
  • [36] Scalable register initialization for quantum computing in an optical lattice
    Brennen, GK
    Pupillo, G
    Rey, AM
    Clark, CW
    Williams, CJ
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2005, 38 (11) : 1687 - 1694
  • [37] Advances and opportunities in materials science for scalable quantum computing
    Lordi, Vincenzo
    Nichol, John M.
    [J]. MRS BULLETIN, 2021, 46 (07) : 589 - 595
  • [38] The path to scalable quantum computing with silicon spin qubits
    Maud Vinet
    [J]. Nature Nanotechnology, 2021, 16 : 1296 - 1298
  • [39] Towards scalable quantum computing based on silicon spin
    Meunier, T.
    Hutin, L.
    Bertrand, B.
    Thonnart, Y.
    Pillonnet, G.
    Billiot, G.
    Jacquinot, H.
    Casse, M.
    Barraud, S.
    Kim, Y-J
    Mazzocchi, V
    Amisse, A.
    Bohuslavskyi, H.
    Bourdet, L.
    Crippa, A.
    Jehl, X.
    Maurand, R.
    Niquet, Y-M
    Sanquer, M.
    Venitucci, B.
    Jadot, B.
    Chanrion, E.
    Mortemousque, P-A
    Spence, C.
    Urdampilleta, M.
    De Franceschi, S.
    Vinet, M.
    [J]. 2019 SYMPOSIUM ON VLSI TECHNOLOGY, 2019, : T30 - T31
  • [40] Floating Tunable Coupler for Scalable Quantum Computing Architectures
    Sete, Eyob A.
    Chen, Angela Q.
    Manenti, Riccardo
    Kulshreshtha, Shobhan
    Poletto, Stefano
    [J]. PHYSICAL REVIEW APPLIED, 2021, 15 (06)