Scalable quantum computing in diamond

被引:0
|
作者
Hemmer, Philip [1 ]
Wrachtrup, Jerog [2 ]
Jelezko, Fedor [2 ]
Tamarat, Philippe [3 ]
Prawer, Steven [4 ]
Lukin, Mikhail [5 ]
机构
[1] Texas A&M Univ, Dept Elect Engn, College Stn, TX 77843 USA
[2] Univ Stuttgart, Inst Phys, Stuttgart, Germany
[3] Univ Bordeaux 1, F-33405 Talence, France
[4] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia
[5] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
关键词
quantum computing; quantum repeaters; diamond; nitrogen vacancy;
D O I
10.1117/12.716388
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Recent progress toward the development of scalable quantum computers based on nitrogen-vacancy (NV) color centers in diamond will be described. Scaling is accomplished through the long-range entanglement of few-qubit processing nodes using photons. Local operations within each processing node will be accomplished using electronically switchable dipole-dipole interactions. Significant progress has been made in the control of the optical transitions. enabling us to reach the level required to attempt long-range entanglement. In the meantime, long-term storage and two-qubit operations have been demonstrated using magnetic dipole-dipole coupling to proximal spins that are not nearest neighbors. Significantly, all the processing node demonstration were been done at room temperature where spin lifetimes were found to be exceptionally long.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Towards Quantum Scalable Data for Heterogeneous Computing Environments
    Tuyen Nguyen
    Paik, Incheon
    Sagawa, Hiroyuki
    Truong Cong Thang
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2022), 2022, : 886 - 889
  • [42] Diamond at the nanoscale: applications of diamond nanoparticles from cellular biomarkers to quantum computing
    Holt, Katherine B.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 365 (1861): : 2845 - 2861
  • [43] Quantum computing with nitrogen-vacancy pairs in diamond
    Trajkov, E
    Jelezko, F
    Wrachtrup, J
    Prawer, S
    Hemmer, P
    [J]. Fluctuations and Noise in Photonics and Quantum Optics III, 2005, 5846 : 272 - 276
  • [44] Silicon-based quantum dots have a path to scalable quantum computing
    Wilson, Mark
    [J]. PHYSICS TODAY, 2018, 71 (04) : 17 - 20
  • [45] Scalable and robust quantum computing on qubit arrays with fixed coupling
    N. H. Le
    M. Cykiert
    E. Ginossar
    [J]. npj Quantum Information, 9
  • [46] Scalable and customizable arbitrary waveform generator for superconducting quantum computing
    Lin, Jin
    Liang, Fu-Tian
    Xu, Yu
    Sun, Li-Hua
    Guo, Cheng
    Liao, Sheng-Kai
    Peng, Cheng-Zhi
    [J]. AIP ADVANCES, 2019, 9 (11)
  • [47] Experimentally realizable scalable quantum computing using superconducting qubits
    You, JQ
    Tsai, JS
    Nori, F
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2003, 18 (1-3): : 35 - 36
  • [48] Scalable ion trap quantum computing without moving ions
    Tian, L
    Blatt, R
    Zoller, P
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2005, 32 (02): : 201 - 208
  • [49] Scalable quantum computing using solid-state devices
    Kane, B
    [J]. EIGHTH ANNUAL SYMPOSIUM ON FRONTIERS OF ENGINEERING, 2003, : 103 - 108
  • [50] An integrated microwave-to-optics interface for scalable quantum computing
    Weaver, Matthew J.
    Duivestein, Pim
    Bernasconi, Alexandra C.
    Scharmer, Selim
    Lemang, Mathilde
    van Thiel, Thierry C.
    Hijazi, Frederick
    Hensen, Bas
    Groblacher, Simon
    Stockill, Robert
    [J]. NATURE NANOTECHNOLOGY, 2024, 19 (02) : 166 - 172