Scalable and customizable arbitrary waveform generator for superconducting quantum computing

被引:14
|
作者
Lin, Jin [1 ,2 ,3 ,4 ]
Liang, Fu-Tian [1 ,2 ,3 ,4 ]
Xu, Yu [1 ,2 ,3 ,4 ]
Sun, Li-Hua [1 ,2 ,3 ,4 ]
Guo, Cheng [1 ,2 ,3 ,4 ]
Liao, Sheng-Kai [1 ,2 ,3 ,4 ]
Peng, Cheng-Zhi [1 ,2 ,3 ,4 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microsca, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Chinese Acad Sci, Ctr Excellence, Shanghai 201315, Peoples R China
[4] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Shanghai 201315, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1063/1.5120299
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Superconducting quantum processors are manufactured based on a semiconductor process, which makes qubit integration possible. At the same time, this kind of qubit exhibits high-performance fidelity and decoherence time and requires a programmable arbitrary waveform generator (AWG). This paper presents the implementation of an AWG with a sampling rate of two-gigabit samples per second as well as 16-bit vertical resolution digital-to-analog converters. The AWGs are designed for a scaled-up usage scenario by integrating them with separate microwave devices onto a single backplane. A special waveform sequence output controller is designed to realize seamless waveform switching and arbitrary waveform generation. The jitter of multiple AWG channels is around 10 ps, and the integral nonlinearity and differential nonlinearity are both about 2 least significant bits. This customizable AWG has been used in several superconducting quantum processors, and the result of multiple qubits' measurement verifies that the AWG is qualified for controlling tens of superconducting qubits. (C) 2019 Author(s).
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Quantum arbitrary waveform generator
    Takase, Kan
    Kawasaki, Akito
    Jeong, Byung Kyu
    Kashiwazaki, Takahiro
    Kazama, Takushi
    Enbutsu, Koji
    Watanabe, Kei
    Umeki, Takeshi
    Miki, Shigehito
    Terai, Hirotaka
    Yabuno, Masahiro
    China, Fumihiro
    Asavanant, Warit
    Endo, Mamoru
    Yoshikawa, Jun-Ichi
    Furusawa, Akira
    SCIENCE ADVANCES, 2022, 8 (43)
  • [2] A scalable, fast, and multichannel arbitrary waveform generator
    Baig, M. T.
    Johanning, M.
    Wiese, A.
    Heidbrink, S.
    Ziolkowski, M.
    Wunderlich, C.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2013, 84 (12):
  • [3] ARBITRARY WAVEFORM GENERATOR
    CAVIGLIA, D
    DEGLORIA, A
    DONZELLINI, G
    PONTA, D
    ALTA FREQUENZA, 1982, 51 (04): : 226 - 228
  • [4] Arbitrary waveform generator for quantum information processing with trapped ions
    Bowler, R.
    Warring, U.
    Britton, J. W.
    Sawyer, B. C.
    Amini, J.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2013, 84 (03):
  • [5] Scalable Quantum Computing Infrastructure Based on Superconducting Electronics
    Mukhanov, O.
    Kirichenko, A.
    Howington, C.
    Walter, J.
    Hutchings, M.
    Vernik, I.
    Yohannes, D.
    Dodge, K.
    Ballard, A.
    Plourde, B. L. T.
    Opremcak, A.
    Liu, C. -H.
    McDermott, R.
    2019 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2019,
  • [6] Photonic arbitrary waveform generator
    Jalali, B
    Kelkar, P
    Saxena, V
    LEOS 2001: 14TH ANNUAL MEETING OF THE IEEE LASERS & ELECTRO-OPTICS SOCIETY, VOLS 1 AND 2, PROCEEDINGS, 2001, : 253 - 254
  • [7] A Test Arbitrary Waveform Generator
    Piksaev, V. M.
    Zaichikov, D. I.
    Pyanzin, D. V.
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 2023, 66 (02) : 249 - 256
  • [8] A Test Arbitrary Waveform Generator
    V. M. Piksaev
    D. I. Zaichikov
    D. V. Pyanzin
    Instruments and Experimental Techniques, 2023, 66 : 249 - 256
  • [9] Photonic Arbitrary Waveform Generator
    Gehl, Michael
    Dapkus, Chris
    Siahmakoun, Azad
    MWP: 2009 INTERNATIONAL TOPICAL MEETING ON MICROWAVE PHOTONICS, 2009, : 228 - 231
  • [10] Randomized Compiling for Scalable Quantum Computing on a Noisy Superconducting Quantum Processor
    Hashim, Akel
    Naik, Ravi K.
    Morvan, Alexis
    Ville, Jean-Loup
    Mitchell, Bradley
    Kreikebaum, John Mark
    Davis, Marc
    Smith, Ethan
    Iancu, Costin
    O'Brien, Kevin P.
    Hincks, Ian
    Wallman, Joel J.
    Emerson, Joseph
    Siddiqi, Irfan
    PHYSICAL REVIEW X, 2021, 11 (04)