Scalable Quantum Computing Infrastructure Based on Superconducting Electronics

被引:21
|
作者
Mukhanov, O. [1 ]
Kirichenko, A. [1 ]
Howington, C. [1 ,2 ]
Walter, J. [1 ]
Hutchings, M. [1 ]
Vernik, I. [1 ]
Yohannes, D. [1 ]
Dodge, K. [2 ]
Ballard, A. [2 ]
Plourde, B. L. T. [2 ]
Opremcak, A. [3 ]
Liu, C. -H. [3 ]
McDermott, R. [3 ]
机构
[1] SeeQC Inc, Elmsford, NY 10523 USA
[2] Syracuse Univ, Syracuse, NY USA
[3] Univ Wisconsin, Madison, WI USA
关键词
D O I
10.1109/iedm19573.2019.8993634
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An approach for scalable quantum computing infrastructure based on the use of low-power digital superconducting single flux quantum (SFQ) circuits is described. Rather than replicating the room-temperature microwave control and measurement infrastructure solutions dominating the current systems, we use the inherent to superconducting technology methods - the use of SFQ pulses directly at the base temperature. For qubit control, we irradiate qubits with the coherent SFQ pulse sequences computed using optical control theory. For qubit measurement, Josephson photon counter performs projective quantum measurement, the result of which is converted to digital SFQ output. These operations are aided by a high-speed digital SFQ coprocessor located at higher temperature stage (e.g., 3 K) to process the measurement results and load new control sequences to 20 mK SFQ quantum-classical interface circuits.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Superconducting Digital Electronics for Controlling Quantum Computing Systems
    Yoshikawa, Nobuyuki
    [J]. IEICE TRANSACTIONS ON ELECTRONICS, 2019, E102C (03) : 217 - 223
  • [2] Randomized Compiling for Scalable Quantum Computing on a Noisy Superconducting Quantum Processor
    Hashim, Akel
    Naik, Ravi K.
    Morvan, Alexis
    Ville, Jean-Loup
    Mitchell, Bradley
    Kreikebaum, John Mark
    Davis, Marc
    Smith, Ethan
    Iancu, Costin
    O'Brien, Kevin P.
    Hincks, Ian
    Wallman, Joel J.
    Emerson, Joseph
    Siddiqi, Irfan
    [J]. PHYSICAL REVIEW X, 2021, 11 (04)
  • [3] Experimentally realizable scalable quantum computing using superconducting qubits
    You, JQ
    Tsai, JS
    Nori, F
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2003, 18 (1-3): : 35 - 36
  • [4] Scalable and customizable arbitrary waveform generator for superconducting quantum computing
    Lin, Jin
    Liang, Fu-Tian
    Xu, Yu
    Sun, Li-Hua
    Guo, Cheng
    Liao, Sheng-Kai
    Peng, Cheng-Zhi
    [J]. AIP ADVANCES, 2019, 9 (11)
  • [5] Low-latency readout electronics for dynamic superconducting quantum computing
    Guo, Cheng
    Lin, Jin
    Han, Lian-Chen
    Li, Na
    Sun, Li-Hua
    Liang, Fu-Tian
    Li, Dong-Dong
    Li, Yu-Huai
    Gong, Ming
    Xu, Yu
    Liao, Sheng-Kai
    Peng, Cheng-Zhi
    [J]. AIP ADVANCES, 2022, 12 (04)
  • [6] A co-simulation of superconducting qubit and control electronics for quantum computing
    Jin, Zhanhong
    Li, Shaowei
    Wang, Xinzhe
    Liang, Futian
    Peng, Cheng-Zhi
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2023, 94 (10):
  • [7] SUPERCONDUCTING QUANTUM ELECTRONICS
    SILVER, AH
    [J]. IEEE JOURNAL OF QUANTUM ELECTRONICS, 1968, QE 4 (11) : 738 - +
  • [8] Scalable Platform for Nanocrystal-Based Quantum Electronics
    Sestoft, Joachim E.
    Gejl, Aske N.
    Kanne, Thomas
    Schlosser, Rasmus D.
    Ross, Daniel
    Kjaer, Daniel
    Grove-Rasmussen, Kasper
    Nygard, Jesper
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (28)
  • [9] Superconducting digital electronics based on single flux quantum
    Hayakawa, H
    [J]. CHINESE JOURNAL OF PHYSICS, 2004, 42 (04) : 451 - 457
  • [10] Scalable Self-Adaptive Synchronous Triggering System in Superconducting Quantum Computing
    Sun, Lihua
    Liang, Futian
    Lin, Jin
    Guo, Cheng
    Xu, Yu
    Liao, Shengkai
    Peng, Chengzhi
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2020, 67 (09) : 2148 - 2154