Low-latency readout electronics for dynamic superconducting quantum computing

被引:5
|
作者
Guo, Cheng [1 ,2 ,3 ]
Lin, Jin [2 ,3 ]
Han, Lian-Chen [1 ,2 ,3 ]
Li, Na [2 ,3 ]
Sun, Li-Hua [1 ,2 ,3 ]
Liang, Fu-Tian [2 ,3 ]
Li, Dong-Dong [2 ,3 ]
Li, Yu-Huai [2 ,3 ]
Gong, Ming [2 ,3 ]
Xu, Yu [2 ,3 ]
Liao, Sheng-Kai [1 ,2 ,3 ]
Peng, Cheng-Zhi [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phy, Shanghai Branch, Shanghai 201315, Peoples R China
[3] Shanghai Res Ctr Quantum Sci, Shanghai 201315, Peoples R China
基金
中国博士后科学基金;
关键词
SUPREMACY;
D O I
10.1063/5.0088879
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Dynamic quantum computing can support quantum error correction circuits to build a large general-purpose quantum computer, which requires electronic instruments to perform the closed-loop operation of readout, processing, and control within 1% of the qubit coherence time. In this paper, we present low-latency readout electronics for dynamic superconducting quantum computing. The readout electronics use a low-latency analog-to-digital converter to capture analog signals, a field-programmable gate array (FPGA) to process digital signals, and the general I/O resources of the FPGA to forward the readout results. Running an algorithm based on the design of multichannel parallelism and single instruction multiple data on an FPGA, the readout electronics achieve a readout latency of 40 ns from the last sample input to the readout valid output. The feedback data link for cross-instrument communication shows a communication latency of 48 ns when 16 bits of data are transmitted over a 2 m-length cable using a homologous clock to drive the transceiver. With codeword-based triggering mechanisms, readout electronics can be used in dynamic superconducting quantum computing. (C)& nbsp;2022 Author(s).& nbsp;
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Low-Latency Digital Signal Processing for Feedback and Feedforward in Quantum Computing and Communication
    Salathe, Yves
    Kurpiers, Philipp
    Karg, Thomas
    Lang, Christian
    Andersen, Christian Kraglund
    Akin, Abdulkadir
    Krinner, Sebastian
    Eichler, Christopher
    Wallraff, Andreas
    [J]. PHYSICAL REVIEW APPLIED, 2018, 9 (03):
  • [2] Low-Latency Robust Computing Vehicular Networks
    Shafigh, Alireza Shams
    Lorenzo, Beatriz
    Glisic, Savo
    Fang, Yuguang
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (02) : 2130 - 2144
  • [3] Low-latency adaptive optical system processing electronics
    Duncan, TS
    Voas, JK
    Eager, RJ
    Newey, SC
    Wynia, JL
    [J]. ADAPTIVE OPTICAL SYSTEM TECHNOLOGIES II, PTS 1 AND 2, 2003, 4839 : 923 - 934
  • [4] Control and Readout Software for Superconducting Quantum Computing
    Guo, Cheng
    Liang, Futian
    Lin, Jin
    Xu, Yu
    Sun, Lihua
    Liu, Weiyue
    Liao, Shengkai
    Peng, Chengzhi
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2019, 66 (07) : 1222 - 1227
  • [5] A low-latency checkpointing scheme for mobile computing systems
    Li, GH
    Shu, LC
    [J]. Proceedings of the 29th Annual International Computer Software and Applications Conference, 2005, : 491 - 496
  • [6] Low-Latency Dynamic Adaptive Video Streaming
    Shuai, Yongtao
    Gorius, Manuel
    Herfet, Thorsten
    [J]. 2014 IEEE INTERNATIONAL SYMPOSIUM ON BROADBAND MULTIMEDIA SYSTEMS AND BROADCASTING (BMSB), 2014,
  • [7] Future Low-latency Networks for High Performance Computing
    Koibuchi, Michihiro
    [J]. 2013 FIRST INTERNATIONAL SYMPOSIUM ON COMPUTING AND NETWORKING (CANDAR), 2013, : 22 - 23
  • [8] Dynamic Transcription for Low-latency Speech Translation
    Niehues, Jan
    Nguyen, Thai Son
    Cho, Eunah
    Ha, Thanh-Le
    Kilgour, Kevin
    Mueller, Markus
    Sperber, Matthias
    Stueker, Sebastian
    Waibel, Alex
    [J]. 17TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2016), VOLS 1-5: UNDERSTANDING SPEECH PROCESSING IN HUMANS AND MACHINES, 2016, : 2513 - 2517
  • [9] Dynamic Task Offloading and Resource Allocation for Ultra-Reliable Low-Latency Edge Computing
    Liu, Chen-Feng
    Bennis, Mehdi
    Debbah, Merouane
    Poor, H. Vincent
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2019, 67 (06) : 4132 - 4150
  • [10] A low-latency computing framework for time-evolving graphs
    Shuo Ji
    Yinliang Zhao
    Xiaomei Zhao
    [J]. The Journal of Supercomputing, 2019, 75 : 3673 - 3692