Low-latency readout electronics for dynamic superconducting quantum computing

被引:5
|
作者
Guo, Cheng [1 ,2 ,3 ]
Lin, Jin [2 ,3 ]
Han, Lian-Chen [1 ,2 ,3 ]
Li, Na [2 ,3 ]
Sun, Li-Hua [1 ,2 ,3 ]
Liang, Fu-Tian [2 ,3 ]
Li, Dong-Dong [2 ,3 ]
Li, Yu-Huai [2 ,3 ]
Gong, Ming [2 ,3 ]
Xu, Yu [2 ,3 ]
Liao, Sheng-Kai [1 ,2 ,3 ]
Peng, Cheng-Zhi [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phy, Shanghai Branch, Shanghai 201315, Peoples R China
[3] Shanghai Res Ctr Quantum Sci, Shanghai 201315, Peoples R China
基金
中国博士后科学基金;
关键词
SUPREMACY;
D O I
10.1063/5.0088879
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Dynamic quantum computing can support quantum error correction circuits to build a large general-purpose quantum computer, which requires electronic instruments to perform the closed-loop operation of readout, processing, and control within 1% of the qubit coherence time. In this paper, we present low-latency readout electronics for dynamic superconducting quantum computing. The readout electronics use a low-latency analog-to-digital converter to capture analog signals, a field-programmable gate array (FPGA) to process digital signals, and the general I/O resources of the FPGA to forward the readout results. Running an algorithm based on the design of multichannel parallelism and single instruction multiple data on an FPGA, the readout electronics achieve a readout latency of 40 ns from the last sample input to the readout valid output. The feedback data link for cross-instrument communication shows a communication latency of 48 ns when 16 bits of data are transmitted over a 2 m-length cable using a homologous clock to drive the transceiver. With codeword-based triggering mechanisms, readout electronics can be used in dynamic superconducting quantum computing. (C)& nbsp;2022 Author(s).& nbsp;
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Dynamic Task Offloading and Scheduling for Low-Latency IoT Services in Multi-Access Edge Computing
    Alameddine, Hyame Assem
    Sharafeddine, Sanaa
    Sebbah, Samir
    Ayoubi, Sara
    Assi, Chadi
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2019, 37 (03) : 668 - 682
  • [22] Low-latency trading
    Hasbrouck, Joel
    Saar, Gideon
    [J]. JOURNAL OF FINANCIAL MARKETS, 2013, 16 (04) : 646 - 679
  • [23] Femto-Farad Optoelectronic Coupling and Low-Latency Nanophotonic Computing
    Notomi, Masaya
    Nozaki, Kengo
    Kita, Shota
    Shinya, Akihiko
    [J]. 2018 20TH ANNIVERSARY INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 2018,
  • [24] Design and evaluation of a low-latency checkpointing scheme for mobile computing systems
    Li, Guohui
    Shu, Lihchyun
    [J]. COMPUTER JOURNAL, 2006, 49 (05): : 527 - 540
  • [25] Distributed Path Computing Scheme for Low-Latency Demand of Internet of Vehicles
    Li, Ruibiao
    Ren, Jijun
    Ren, Zhiyuan
    [J]. Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2022, 56 (10): : 91 - 100
  • [26] Empowering Low-Latency Applications Through a Serverless Edge Computing Architecture
    Baresi, Luciano
    Mendonca, Danilo Filgueira
    Garriga, Martin
    [J]. SERVICE-ORIENTED AND CLOUD COMPUTING (ESOCC 2017), 2017, 10465 : 196 - 210
  • [27] Personal Services Placement and Low-Latency Migration in Edge Computing Environments
    Bruschi, R.
    Davoli, F.
    Lago, P.
    Lombardo, C.
    Pajo, J. F.
    [J]. 2018 IEEE CONFERENCE ON NETWORK FUNCTION VIRTUALIZATION AND SOFTWARE DEFINED NETWORKS (NFV-SDN), 2018,
  • [28] Mobile Edge Computing and Networking for Green and Low-Latency Internet of Things
    Zhang, Ke
    Leng, Supeng
    He, Yejun
    Maharjan, Sabita
    Zhang, Yan
    [J]. IEEE COMMUNICATIONS MAGAZINE, 2018, 56 (05) : 39 - 45
  • [29] Experimental Low-Latency Device-Independent Quantum Randomness
    Zhang, Yanbao
    Shalm, Lynden K.
    Bienfang, Joshua C.
    Stevens, Martin J.
    Mazurek, Michael D.
    Nam, Sae Woo
    Abellan, Carlos
    Amaya, Waldimar
    Mitchell, Morgan W.
    Fu, Honghao
    Miller, Carl A.
    Mink, Alan
    Knill, Emanuel
    [J]. PHYSICAL REVIEW LETTERS, 2020, 124 (01)
  • [30] Offloading Optimization for Low-Latency Secure Mobile Edge Computing Systems
    Zhou, Yi
    Yeoh, Phee Lep
    Pan, Cunhua
    Wang, Kezhi
    Elkashlan, Maged
    Wang, Zhongfeng
    Vucetic, Branka
    Li, Yonghui
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (04) : 480 - 484