Low-latency readout electronics for dynamic superconducting quantum computing

被引:5
|
作者
Guo, Cheng [1 ,2 ,3 ]
Lin, Jin [2 ,3 ]
Han, Lian-Chen [1 ,2 ,3 ]
Li, Na [2 ,3 ]
Sun, Li-Hua [1 ,2 ,3 ]
Liang, Fu-Tian [2 ,3 ]
Li, Dong-Dong [2 ,3 ]
Li, Yu-Huai [2 ,3 ]
Gong, Ming [2 ,3 ]
Xu, Yu [2 ,3 ]
Liao, Sheng-Kai [1 ,2 ,3 ]
Peng, Cheng-Zhi [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phy, Shanghai Branch, Shanghai 201315, Peoples R China
[3] Shanghai Res Ctr Quantum Sci, Shanghai 201315, Peoples R China
基金
中国博士后科学基金;
关键词
SUPREMACY;
D O I
10.1063/5.0088879
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Dynamic quantum computing can support quantum error correction circuits to build a large general-purpose quantum computer, which requires electronic instruments to perform the closed-loop operation of readout, processing, and control within 1% of the qubit coherence time. In this paper, we present low-latency readout electronics for dynamic superconducting quantum computing. The readout electronics use a low-latency analog-to-digital converter to capture analog signals, a field-programmable gate array (FPGA) to process digital signals, and the general I/O resources of the FPGA to forward the readout results. Running an algorithm based on the design of multichannel parallelism and single instruction multiple data on an FPGA, the readout electronics achieve a readout latency of 40 ns from the last sample input to the readout valid output. The feedback data link for cross-instrument communication shows a communication latency of 48 ns when 16 bits of data are transmitted over a 2 m-length cable using a homologous clock to drive the transceiver. With codeword-based triggering mechanisms, readout electronics can be used in dynamic superconducting quantum computing. (C)& nbsp;2022 Author(s).& nbsp;
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Mobile Edge Computing for Ultra-Reliable and Low-Latency Communications
    Jiang, Kai
    Zhou, Huan
    Chen, Xin
    Zhang, Haijun
    [J]. IEEE Communications Standards Magazine, 2021, 5 (02): : 68 - 75
  • [32] Privacy-Preserving and Low-Latency Federated Learning in Edge Computing
    He, Chunrong
    Liu, Guiyan
    Guo, Songtao
    Yang, Yuanyuan
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (20): : 20149 - 20159
  • [33] Offloading Optimization for Low-Latency Secure Mobile Edge Computing Systems
    Zhou, Yi
    Yeoh, Phee Lep
    Pan, Cunhua
    Wang, Kezhi
    Elkashlan, Maged
    Wang, Zhongfeng
    Vucetic, Branka
    Li, Yonghui
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (04) : 480 - 484
  • [34] FAST: Flexible and Low-Latency State Transfer in Mobile Edge Computing
    Doan, Tung, V
    Nguyen, Giang T.
    Reisslein, Martin
    Fitzek, Frank H. P.
    [J]. IEEE ACCESS, 2021, 9 : 115315 - 115334
  • [35] A Buffer Dynamic Stabilizer for Low-Latency Adaptive Video Streaming
    Shuai, Yongtao
    Herfet, Thorsten
    [J]. 2016 IEEE 6TH INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - BERLIN (ICCE-BERLIN), 2016,
  • [36] A Low-Latency BF Decoding of LDPC Codes With Dynamic Thresholds
    Jiang, Ming
    Fan, Dongli
    [J]. IEEE COMMUNICATIONS LETTERS, 2021, 25 (09) : 2781 - 2785
  • [37] Dynamic Polling Sequence Arrangement for Low-Latency Wireless LAN
    Lv, Yunxin
    Ruan, Lihua
    Dias, Maluge Pubuduni Imali
    Wong, Elaine
    Feng, Ye
    Jiang, Ning
    Qiu, Kun
    [J]. 2018 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), 2018,
  • [38] Investigation and optimization of low-frequency noise performance in readout electronics of dc superconducting quantum interference device
    Zhao, Jing
    Zhang, Yi
    Lee, Yong-Ho
    Krause, Hans-Joachim
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (05):
  • [39] A miniature magnetometer based on the superconducting quantum interference device with direct readout electronics
    Polushkin, V
    Wallis, M
    Glowacka, D
    Matthews, A
    Lumley, JM
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1997, 68 (03): : 1461 - 1464
  • [40] Orthros: A Low-Latency PRF
    Banik, Subhadeep
    Isobe, Takanori
    Liu, Fukang
    Minematsu, Kazuhiko
    Sakamoto, Kosei
    [J]. IACR TRANSACTIONS ON SYMMETRIC CRYPTOLOGY, 2021, 2021 (01) : 37 - 77