Randomized Compiling for Scalable Quantum Computing on a Noisy Superconducting Quantum Processor

被引:61
|
作者
Hashim, Akel [1 ,2 ,3 ]
Naik, Ravi K. [1 ,3 ]
Morvan, Alexis [1 ,3 ]
Ville, Jean-Loup [1 ]
Mitchell, Bradley [1 ,3 ]
Kreikebaum, John Mark [1 ,4 ,10 ]
Davis, Marc [3 ]
Smith, Ethan [3 ]
Iancu, Costin [3 ]
O'Brien, Kevin P. [5 ]
Hincks, Ian [6 ,7 ]
Wallman, Joel J. [6 ,7 ,8 ,9 ]
Emerson, Joseph [6 ,7 ,8 ,9 ]
Siddiqi, Irfan [1 ,3 ,4 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Quantum Nanoelect Lab, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Grad Grp Appl Sci & Technol, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[5] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02142 USA
[6] Quantum Benchmark Inc, Kitchener, ON N2H 5G5, Canada
[7] Keysight Technol Canada, Kanata, ON K2K 2W5, Canada
[8] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[9] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
[10] Google Quantum AI, Mountain View, CA USA
关键词
ALGORITHMS;
D O I
10.1103/PhysRevX.11.041039
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The successful implementation of algorithms on quantum processors relies on the accurate control of quantum bits (qubits) to perform logic gate operations. In this era of noisy intermediate-scale quantum (NISQ) computing, systematic miscalibrations, drift, and crosstalk in the control of qubits can lead to a coherent form of error that has no classical analog. Coherent errors severely limit the performance of quantum algorithms in an unpredictable manner, and mitigating their impact is necessary for realizing reliable quantum computations. Moreover, the average error rates measured by randomized benchmarking and related protocols are not sensitive to the full impact of coherent errors and therefore do not reliably predict the global performance of quantum algorithms, leaving us unprepared to validate the accuracy of future large-scale quantum computations. Randomized compiling is a protocol designed to overcome these performance limitations by converting coherent errors into stochastic noise, dramatically reducing unpredictable errors in quantum algorithms and enabling accurate predictions of algorithmic performance from error rates measured via cycle benchmarking. In this work, we demonstrate significant performance gains under randomized compiling for the four-qubit quantum Fourier transform algorithm and for random circuits of variable depth on a superconducting quantum processor. Additionally, we accurately predict algorithm performance using experimentally measured error rates. Our results demonstrate that randomized compiling can be utilized to leverage and predict the capabilities of modern-day noisy quantum processors, paving the way forward for scalable quantum computing.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Scalable Quantum Processor Based on Superconducting Fluxonium Qubits
    Mazhorin, G. S.
    Kaz'mina, A. S.
    Chudakova, T. A.
    Simakov, I. A.
    Maleeva, N. A.
    Moskalenko, I. N.
    Ryazanov, V. V.
    [J]. RADIOPHYSICS AND QUANTUM ELECTRONICS, 2024, : 893 - 906
  • [2] Quantum equation of motion for computing molecular excitation energies on a noisy quantum processor
    Ollitrault, Pauline J.
    Kandala, Abhinav
    Chen, Chun-Fu
    Barkoutsos, Panagiotis Kl
    Mezzacapo, Antonio
    Pistoia, Marco
    Sheldon, Sarah
    Woerner, Stefan
    Gambetta, Jay M.
    Tavernelli, Ivano
    [J]. PHYSICAL REVIEW RESEARCH, 2020, 2 (04):
  • [3] Noise tailoring for scalable quantum computation via randomized compiling
    Wallman, Joel J.
    Emerson, Joseph
    [J]. PHYSICAL REVIEW A, 2016, 94 (05)
  • [4] A scalable control system for a superconducting adiabatic quantum optimization processor
    Johnson, M. W.
    Bunyk, P.
    Maibaum, F.
    Tolkacheva, E.
    Berkley, A. J.
    Chapple, E. M.
    Harris, R.
    Johansson, J.
    Lanting, T.
    Perminov, I.
    Ladizinsky, E.
    Oh, T.
    Rose, G.
    [J]. SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2010, 23 (06):
  • [5] Scalable Quantum Computing Infrastructure Based on Superconducting Electronics
    Mukhanov, O.
    Kirichenko, A.
    Howington, C.
    Walter, J.
    Hutchings, M.
    Vernik, I.
    Yohannes, D.
    Dodge, K.
    Ballard, A.
    Plourde, B. L. T.
    Opremcak, A.
    Liu, C. -H.
    McDermott, R.
    [J]. 2019 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2019,
  • [6] Scalable and customizable arbitrary waveform generator for superconducting quantum computing
    Lin, Jin
    Liang, Fu-Tian
    Xu, Yu
    Sun, Li-Hua
    Guo, Cheng
    Liao, Sheng-Kai
    Peng, Cheng-Zhi
    [J]. AIP ADVANCES, 2019, 9 (11)
  • [7] Experimentally realizable scalable quantum computing using superconducting qubits
    You, JQ
    Tsai, JS
    Nori, F
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2003, 18 (1-3): : 35 - 36
  • [8] Quantum criticality using a superconducting quantum processor
    Dupont, Maxime
    Moore, Joel E.
    [J]. PHYSICAL REVIEW B, 2022, 106 (04)
  • [9] Controlling a superconducting quantum processor
    Katharina Zeissler
    [J]. Nature Electronics, 2023, 6 : 181 - 181
  • [10] A Microarchitecture for a Superconducting Quantum Processor
    Fu, X.
    Rol, M. A.
    Bultink, C. C.
    van Someren, J.
    Khammassi, N.
    Ashraf, I.
    Vermeulen, R. F. L.
    de Sterke, J. C.
    Vlothuizen, W. J.
    Schouten, R. N.
    Almudever, C. G.
    DiCarlo, L.
    Bertels, K.
    [J]. IEEE MICRO, 2018, 38 (03) : 40 - 47