Scalable quantum computing in diamond

被引:0
|
作者
Hemmer, Philip [1 ]
Wrachtrup, Jerog [2 ]
Jelezko, Fedor [2 ]
Tamarat, Philippe [3 ]
Prawer, Steven [4 ]
Lukin, Mikhail [5 ]
机构
[1] Texas A&M Univ, Dept Elect Engn, College Stn, TX 77843 USA
[2] Univ Stuttgart, Inst Phys, Stuttgart, Germany
[3] Univ Bordeaux 1, F-33405 Talence, France
[4] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia
[5] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
关键词
quantum computing; quantum repeaters; diamond; nitrogen vacancy;
D O I
10.1117/12.716388
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Recent progress toward the development of scalable quantum computers based on nitrogen-vacancy (NV) color centers in diamond will be described. Scaling is accomplished through the long-range entanglement of few-qubit processing nodes using photons. Local operations within each processing node will be accomplished using electronically switchable dipole-dipole interactions. Significant progress has been made in the control of the optical transitions. enabling us to reach the level required to attempt long-range entanglement. In the meantime, long-term storage and two-qubit operations have been demonstrated using magnetic dipole-dipole coupling to proximal spins that are not nearest neighbors. Significantly, all the processing node demonstration were been done at room temperature where spin lifetimes were found to be exceptionally long.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Multilayer microwave integrated quantum circuits for scalable quantum computing
    Brecht, Teresa
    Pfaff, Wolfgang
    Wang, Chen
    Chu, Yiwen
    Frunzio, Luigi
    Devoret, Michel H.
    Schoelkopf, Robert J.
    [J]. NPJ QUANTUM INFORMATION, 2016, 2
  • [22] Modularized and scalable compilation for double quantum dot quantum computing
    He, Run-Hong
    Xu, Xu-Sheng
    Byrd, Mark S.
    Wang, Zhao-Ming
    [J]. QUANTUM SCIENCE AND TECHNOLOGY, 2024, 9 (01):
  • [23] Scalable Hybrid CMOS-Diamond Quantum Magnetometers
    Ibrahim, Mohamed I.
    [J]. PROCEEDINGS OF THE GREAT LAKES SYMPOSIUM ON VLSI 2023, GLSVLSI 2023, 2023, : 115 - 116
  • [24] Photonic Architecture for Scalable Quantum Information Processing in Diamond
    Nemoto, Kae
    Trupke, Michael
    Devitt, Simon J.
    Stephens, Ashley M.
    Scharfenberger, Burkhard
    Buczak, Kathrin
    Noebauer, Tobias
    Everitt, Mark S.
    Schmiedmayer, Joerg
    Munro, William J.
    [J]. PHYSICAL REVIEW X, 2014, 4 (03):
  • [25] Quantum computing - Diamond wedding for spin couple
    Morton, JJL
    [J]. NATURE PHYSICS, 2006, 2 (06) : 365 - 366
  • [26] Diamond integrated photonics for quantum computing applications
    Ulanov, Mark
    Jin, Lin
    Pernice, Wolfram H. P.
    [J]. INTEGRATED PHOTONICS PLATFORMS III, 2024, 13012
  • [27] Multilayer ion trap technology for scalable quantum computing and quantum simulation
    Bautista-Salvador, A.
    Zarantonello, G.
    Hahn, H.
    Preciado-Grijalva, A.
    Morgner, J.
    Wahnschaffe, M.
    Ospelkaus, C.
    [J]. NEW JOURNAL OF PHYSICS, 2019, 21 (04)
  • [28] Randomized Compiling for Scalable Quantum Computing on a Noisy Superconducting Quantum Processor
    Hashim, Akel
    Naik, Ravi K.
    Morvan, Alexis
    Ville, Jean-Loup
    Mitchell, Bradley
    Kreikebaum, John Mark
    Davis, Marc
    Smith, Ethan
    Iancu, Costin
    O'Brien, Kevin P.
    Hincks, Ian
    Wallman, Joel J.
    Emerson, Joseph
    Siddiqi, Irfan
    [J]. PHYSICAL REVIEW X, 2021, 11 (04)
  • [29] Quantum Computing is Scalable on a Planar Array of Qubits with Fabrication
    Strikis, Armands
    Benjamin, Simon C.
    Brown, Benjamin J.
    [J]. PHYSICAL REVIEW APPLIED, 2023, 19 (06)
  • [30] The path to scalable quantum computing with silicon spin qubits
    Vinet, Maud
    [J]. NATURE NANOTECHNOLOGY, 2021, 16 (12) : 1296 - 1298