Scalable Hybrid CMOS-Diamond Quantum Magnetometers

被引:0
|
作者
Ibrahim, Mohamed I. [1 ]
机构
[1] Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
CMOS-diamond; magnetometry; nitrogen-vacancy (NV) centers; SPIN;
D O I
10.1145/3583781.3590215
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nitrogen-vacancy (NV) centers in diamond have demonstrated outstanding sensing and imaging capabilities. However, their conventional implementations have used discrete instrumentation for microwave generation and optical readout, which increases the system scale. This work presents a chip-scale complementary-metaloxide-semiconductor (CMOS) platform that integrates the necessary components for NV quantum state control and measurement. Specifically, a scalable CMOS integrated system capable of the control and readout of an ensemble of NV centers for vector magnetic field sensing is discussed. We demonstrate a sensitivity of 245 nT/Hz1/2, representing 130x improvement over our previous CMOS-diamond sensor prototype. This scalable architecture opens the door for sub-nT/Hz1/2 sensitivity in the future and the possibility of incorporating additional functionalities.
引用
收藏
页码:115 / 116
页数:2
相关论文
共 50 条
  • [1] Gradiometer Using Separated Diamond Quantum Magnetometers
    Masuyama, Yuta
    Suzuki, Katsumi
    Hekizono, Akira
    Iwanami, Mitsuyasu
    Hatano, Mutsuko
    Iwasaki, Takayuki
    Ohshima, Takeshi
    [J]. SENSORS, 2021, 21 (03) : 1 - 11
  • [2] Scalable quantum computing in diamond
    Hemmer, Philip
    Wrachtrup, Jerog
    Jelezko, Fedor
    Tamarat, Philippe
    Prawer, Steven
    Lukin, Mikhail
    [J]. ADVANCED OPTICAL AND QUANTUM MEMORIES AND COMPUTING IV, 2007, 6482
  • [3] Maximum density of quantum information in a scalable CMOS implementation of the hybrid qubit architecture
    Davide Rotta
    Marco De Michielis
    Elena Ferraro
    Marco Fanciulli
    Enrico Prati
    [J]. Quantum Information Processing, 2016, 15 : 2253 - 2274
  • [4] Maximum density of quantum information in a scalable CMOS implementation of the hybrid qubit architecture
    Rotta, Davide
    De Michielis, Marco
    Ferraro, Elena
    Fanciulli, Marco
    Prati, Enrico
    [J]. QUANTUM INFORMATION PROCESSING, 2016, 15 (06) : 2253 - 2274
  • [5] Scalable Phononic Quantum Networks of Spins in Diamond
    Kuzyk, Mark C.
    Wang, Hailin
    [J]. 2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,
  • [6] Hybrid quantum sensing in diamond
    Wang, Ning
    Cai, Jianming
    [J]. FRONTIERS IN PHYSICS, 2024, 12
  • [7] Photonic Architecture for Scalable Quantum Information Processing in Diamond
    Nemoto, Kae
    Trupke, Michael
    Devitt, Simon J.
    Stephens, Ashley M.
    Scharfenberger, Burkhard
    Buczak, Kathrin
    Noebauer, Tobias
    Everitt, Mark S.
    Schmiedmayer, Joerg
    Munro, William J.
    [J]. PHYSICAL REVIEW X, 2014, 4 (03):
  • [8] SUPERCONDUCTING QUANTUM MAGNETOMETERS
    WEBB, WW
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 1972, MAG8 (01) : 51 - &
  • [9] Cryo-CMOS Circuits and Systems for Scalable Quantum Computing
    Charbon, Edoardo
    Sebastiano, Fabio
    Babaie, Masoud
    Vladimirescu, Andrei
    Shahmohammadi, Mina
    Staszewski, Robert Bogdan
    Homulle, Harald A. R.
    Patra, Bishnu
    van Dijk, Jeroen P. G.
    Incandela, Rosario M.
    Song, Lin
    Valizadehpasha, Bahador
    [J]. 2017 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE (ISSCC), 2017, : 264 - 264
  • [10] Systems Engineering of Cryogenic CMOS Electronics for Scalable Quantum Computers
    Degenhardt, C.
    Artanov, A.
    Geck, L.
    Grewing, C.
    Kruth, A.
    Nielinger, D.
    Vliex, P.
    Zambanini, A.
    van Waasen, S.
    [J]. 2019 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2019,