Scalable quantum computing in diamond

被引:0
|
作者
Hemmer, Philip [1 ]
Wrachtrup, Jerog [2 ]
Jelezko, Fedor [2 ]
Tamarat, Philippe [3 ]
Prawer, Steven [4 ]
Lukin, Mikhail [5 ]
机构
[1] Texas A&M Univ, Dept Elect Engn, College Stn, TX 77843 USA
[2] Univ Stuttgart, Inst Phys, Stuttgart, Germany
[3] Univ Bordeaux 1, F-33405 Talence, France
[4] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia
[5] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
关键词
quantum computing; quantum repeaters; diamond; nitrogen vacancy;
D O I
10.1117/12.716388
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Recent progress toward the development of scalable quantum computers based on nitrogen-vacancy (NV) color centers in diamond will be described. Scaling is accomplished through the long-range entanglement of few-qubit processing nodes using photons. Local operations within each processing node will be accomplished using electronically switchable dipole-dipole interactions. Significant progress has been made in the control of the optical transitions. enabling us to reach the level required to attempt long-range entanglement. In the meantime, long-term storage and two-qubit operations have been demonstrated using magnetic dipole-dipole coupling to proximal spins that are not nearest neighbors. Significantly, all the processing node demonstration were been done at room temperature where spin lifetimes were found to be exceptionally long.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Quantum computing in diamond
    Shahriar, MS
    Hemmer, PR
    Lloyd, S
    Turukhin, A
    [J]. EXPERIMENTAL IMPLEMENTATION OF QUANTUM COMPUTATION, 2001, : 16 - 24
  • [2] Towards scalable silicon quantum computing
    Vinet, M.
    Hutin, L.
    Bertrand, B.
    Barraud, S.
    Hartmann, J. -M.
    Kim, Y. -J.
    Mazzocchi, V.
    Amisse, A.
    Bohuslavskyi, H.
    Bourdet, L.
    Crippa, A.
    Jehl, X.
    Maurand, R.
    Niquet, Y. -M.
    Sanquer, M.
    Venitucci, B.
    Jadot, B.
    Chanrion, E.
    Mortemousque, P. -A.
    Spence, C.
    Urdampilleta, M.
    De Franceschi, S.
    Meunier, T.
    [J]. 2018 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2018,
  • [3] The Path to Scalable Distributed Quantum Computing
    Van Meter, Rodney
    Devitt, Simon J.
    [J]. COMPUTER, 2016, 49 (09) : 31 - 42
  • [4] Scalable quantum computing with atomic ensembles
    Barrett, Sean D.
    Rohde, Peter P.
    Stace, Thomas M.
    [J]. NEW JOURNAL OF PHYSICS, 2010, 12
  • [5] Scalable manufacturing processes for quantum computing
    [J]. Nature Electronics, 2022, 5 : 201 - 202
  • [6] Scalable quantum computing with qudits on a graph
    Kiktenko, E. O.
    Nikolaeva, A. S.
    Xu, Peng
    Shlyapnikov, G., V
    Fedorov, A. K.
    [J]. PHYSICAL REVIEW A, 2020, 101 (02)
  • [7] Towards scalable silicon quantum computing
    Vinet, M.
    Hutin, L.
    Bertrand, B.
    Bohuslayskyi, H.
    Corna, A.
    Amisse, A.
    Crippa, A.
    Bourdet, L.
    Maurand, R.
    Barraud, S.
    Urdampilleta, M.
    Bauerle, C.
    Sanquer, M.
    Jehl, X.
    Niquet, Y. -M.
    De Franceschi, S.
    Meunier, T.
    [J]. 2018 76TH DEVICE RESEARCH CONFERENCE (DRC), 2018,
  • [8] A Functional Architecture for Scalable Quantum Computing
    Sete, Eyob A.
    Zeng, William J.
    Rigetti, Chad T.
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING (ICRC), 2016,
  • [9] Scalable manufacturing processes for quantum computing
    Pillarisetty, Ravi
    [J]. NATURE ELECTRONICS, 2022, 5 (04) : 201 - 202
  • [10] Scalable Phononic Quantum Networks of Spins in Diamond
    Kuzyk, Mark C.
    Wang, Hailin
    [J]. 2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,