Advances and opportunities in materials science for scalable quantum computing

被引:0
|
作者
Lordi, Vincenzo [1 ]
Nichol, John M. [2 ]
机构
[1] Lawrence Livermore Natl Lab, Mat Sci Div, Livermore, CA 94550 USA
[2] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
基金
美国国家科学基金会;
关键词
SILICON;
D O I
10.1557/s43577-021-00133-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
By harnessing unique quantum mechanical phenomena, such as superposition and entanglement, quantum computers offer the possibility to drastically outperform classical computers for certain classes of problems. The realization of this potential, however, presents a substantial challenge, because noise and imperfections associated with the materials used to fabricate devices can obscure the delicate quantum mechanical effects that enable quantum computing. Hence, progress in synthesis, characterization, and modeling of materials for quantum computing have driven many exciting advances in recent years and will become increasingly important in the years to come. As progressively more complex, multi-qubit systems come online, and as significant government and industrial investment drives research forward, new challenges and opportunities for materials science continue to emerge. The articles in this issue survey the current state of materials science progress and obstacles for some leading quantum computing platforms; opportunities for deeper involvement by materials scientists abound. Ultimate realization of the full potential of quantum computers will require a multidisciplinary effort spanning many traditional areas of expertise.
引用
收藏
页码:589 / 595
页数:7
相关论文
共 50 条
  • [1] Advances and opportunities in materials science for scalable quantum computing
    Vincenzo Lordi
    John M. Nichol
    [J]. MRS Bulletin, 2021, 46 : 589 - 595
  • [2] Materials challenges and opportunities for quantum computing hardware
    de Leon, Nathalie P.
    Itoh, Kohei M.
    Kim, Dohun
    Mehta, Karan K.
    Northup, Tracy E.
    Paik, Hanhee
    Palmer, B. S.
    Samarth, N.
    Sangtawesin, Sorawis
    Steuerman, D. W.
    [J]. SCIENCE, 2021, 372 (6539) : 253 - +
  • [3] New advances in chemistry and materials science with CPMD and parallel computing
    Andreoni, W
    Curioni, A
    [J]. PARALLEL COMPUTING, 2000, 26 (7-8) : 819 - 842
  • [4] Scalable quantum computing in diamond
    Hemmer, Philip
    Wrachtrup, Jerog
    Jelezko, Fedor
    Tamarat, Philippe
    Prawer, Steven
    Lukin, Mikhail
    [J]. ADVANCED OPTICAL AND QUANTUM MEMORIES AND COMPUTING IV, 2007, 6482
  • [5] Advances in Quantum Computing
    La Cour, Brian
    [J]. ENTROPY, 2023, 25 (12)
  • [6] Advances in quantum computing
    不详
    [J]. INTERNATIONAL SUGAR JOURNAL, 2011, 113 (1345): : 16 - 16
  • [7] Quantum computing and materials science: A practical guide to applying quantum annealing to the configurational analysis of materials
    Camino, B.
    Buckeridge, J.
    Warburton, P. A.
    Kendon, V.
    Woodley, S. M.
    [J]. JOURNAL OF APPLIED PHYSICS, 2023, 133 (22)
  • [8] Quantum materials for energy-efficient neuromorphic computing: Opportunities and challenges
    Hoffmann, Axel
    Ramanathan, Shriram
    Grollier, Julie
    Kent, Andrew D.
    Rozenberg, Marcelo J.
    Schuller, Ivan K.
    Shpyrko, Oleg G.
    Dynes, Robert C.
    Fainman, Yeshaiahu
    Frano, Alex
    Fullerton, Eric E.
    Galli, Giulia
    Lomakin, Vitaliy
    Ong, Shyue Ping
    Petford-Long, Amanda K.
    Schuller, Jonathan A.
    Stiles, Mark D.
    Takamura, Yayoi
    Zhu, Yimei
    [J]. APL MATERIALS, 2022, 10 (07)
  • [9] Opportunities and advances in mesoscale science
    Sarrao, J. L.
    Crabtree, G. W.
    [J]. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2015, 19 (04): : 201 - 202
  • [10] Advances in science trigger opportunities
    Rotman, D
    [J]. CHEMICAL WEEK, 1996, 158 (30) : 37 - 37