On the dimension group of unimodular S-adic subshifts

被引:0
|
作者
Berthe, V [1 ]
Bernales, P. Cecchi [2 ]
Durand, F. [3 ]
Leroy, J. [4 ]
Perrin, D. [5 ]
Petite, S. [3 ]
机构
[1] Univ Paris, CNRS, IRIF, F-75013 Paris, France
[2] Univ Chile, Ctr Modelamiento Matemat, Santiago, Chile
[3] Univ Picardie Jules Verne, LAMFA, CNRS, UMR 7352, 33 Rue St Leu, F-80039 Amiens, France
[4] Univ Liege, Dept Math, 12,Allee Decouverte B37, B-4000 Liege, Belgium
[5] Univ Paris Est, Lab Informat Gaspard Monge, Champs Sur Marne, France
来源
MONATSHEFTE FUR MATHEMATIK | 2021年 / 194卷 / 04期
关键词
Dimension group; S-adic subshift; Orbit equivalence; Dendric subshift; Balance property;
D O I
10.1007/s00605-020-01488-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Dimension groups are complete invariants of strong orbit equivalence for minimal Cantor systems. This paper studies a natural family of minimal Cantor systems having a finitely generated dimension group, namely the primitive unimodular proper S-adic subshifts. They are generated by iterating sequences of substitutions. Proper substitutions are such that the images of letters start with a same letter, and similarly end with a same letter. This family includes various classes of subshifts such as Brun subshifts or dendric subshifts, that in turn include Arnoux-Rauzy subshifts and natural coding of interval exchange transformations. We compute their dimension group and investigate the relation between the triviality of the infinitesimal subgroup and rational independence of letter measures. We also introduce the notion of balanced functions and provide a topological characterization of balancedness for primitive unimodular proper S-adic subshifts.
引用
收藏
页码:687 / 717
页数:31
相关论文
共 50 条
  • [1] On the automorphism group of minimal S-adic subshifts of finite alphabet rank
    Espinoza, Bastian
    Maass, Alejandro
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2021, : 2800 - 2822
  • [2] Measure transfer and S-adic developments for subshifts
    Bedaride, Nicolas
    Hilion, Arnaud
    Lustig, Martin
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2024,
  • [3] Symbolic factors of S-adic subshifts of finite alphabet rank
    Espinoza, Bastian
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (05) : 1511 - 1547
  • [4] Equidistribution in the dual group of the S-adic integers
    Roman Urban
    [J]. Czechoslovak Mathematical Journal, 2014, 64 : 911 - 931
  • [5] Equidistribution in the dual group of the S-adic integers
    Urban, Roman
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2014, 64 (04) : 911 - 931
  • [6] INTERPLAY BETWEEN FINITE TOPOLOGICAL RANK MINIMAL CANTOR SYSTEMS, S-ADIC SUBSHIFTS AND THEIR COMPLEXITY
    Donoso, Sebastian
    Durand, Fabien
    Maass, Alejandro
    Petite, Samuel
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (05) : 3453 - 3489
  • [7] THE ABSOLUTE GALOIS GROUP OF THE FIELD OF TOTALLY S-ADIC NUMBERS
    Haran, Dan
    Jarden, Moshe
    Pop, Florian
    [J]. NAGOYA MATHEMATICAL JOURNAL, 2009, 194 : 91 - 147
  • [8] THE ABSOLUTE GALOIS GROUP OF SUBFIELDS OF THE FIELD OF TOTALLY S-ADIC NUMBERS
    Haran, Dan
    Jarden, Moshe
    Pop, Florian
    [J]. FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2012, 46 (02) : 205 - 223
  • [9] Some improvements of the S-adic conjecture
    Leroy, Julien
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2012, 48 (01) : 79 - 98
  • [10] S-adic conjecture and Bratteli diagrams
    Durand, Fabien
    Leroy, Julien
    [J]. COMPTES RENDUS MATHEMATIQUE, 2012, 350 (21-22) : 979 - 983