On the automorphism group of minimal S-adic subshifts of finite alphabet rank

被引:0
|
作者
Espinoza, Bastian [1 ,2 ,3 ,4 ]
Maass, Alejandro [1 ,2 ,3 ]
机构
[1] Univ Chile, Dept Ingn Matemat, Beauchef 851, Santiago, Chile
[2] Univ Chile, Ctr Modelamiento Matemat, Beauchef 851, Santiago, Chile
[3] IRL CNRS 2807, Beauchef 851, Santiago, Chile
[4] Univ Picardie Jules Verne, Lab Arnienois Math Fondamentale & Appl, CNRS, UMR 7352, 33 Rue St Leu, F-80039 Amiens, France
关键词
S-adic subshifts; automorphism group; minimal Cantor systems; finite topological rank; DIAGRAMS; SHIFT;
D O I
10.1017/etds.2021.64
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It has been recently proved that the automorphism group of a minimal subshift with non-superlinear word complexity is virtually Z [Cyr and Kra. The automorphism group of a shift of linear growth: beyond transitivity. Forum Math. Sigma 3 (2015), e5; Donoso et al. On automorphism groups of low complexity subshifts. Ergod. Th. & Dynam. Sys. 36(1) (2016), 64-95]. In this article we extend this result to a broader class proving that the automorphism group of a minimal S-adic subshift of finite alphabet rank is virtually Z. The proof is based on a fine combinatorial analysis of the asymptotic classes in this type of subshifts, which we prove are a finite number.
引用
收藏
页码:2800 / 2822
页数:23
相关论文
共 40 条
  • [1] Symbolic factors of S-adic subshifts of finite alphabet rank
    Espinoza, Bastian
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (05) : 1511 - 1547
  • [2] INTERPLAY BETWEEN FINITE TOPOLOGICAL RANK MINIMAL CANTOR SYSTEMS, S-ADIC SUBSHIFTS AND THEIR COMPLEXITY
    Donoso, Sebastian
    Durand, Fabien
    Maass, Alejandro
    Petite, Samuel
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (05) : 3453 - 3489
  • [3] On the dimension group of unimodular S-adic subshifts
    Berthe, V
    Bernales, P. Cecchi
    Durand, F.
    Leroy, J.
    Perrin, D.
    Petite, S.
    MONATSHEFTE FUR MATHEMATIK, 2021, 194 (04): : 687 - 717
  • [4] On partial rigidity of S-adic subshifts
    Donoso, Sebastian
    Maass, Alejandro
    Radic, Tristan
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2025,
  • [5] Measure transfer and S-adic developments for subshifts
    Bedaride, Nicolas
    Hilion, Arnaud
    Lustig, Martin
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2024, 44 (11) : 3120 - 3154
  • [6] The rank of the automorphism group of a finite group
    B. A. F. Wehrfritz
    Ricerche di Matematica, 2019, 68 : 415 - 420
  • [7] The rank of the automorphism group of a finite group
    Wehrfritz, B. A. F.
    RICERCHE DI MATEMATICA, 2019, 68 (02) : 415 - 420
  • [8] Equidistribution in the dual group of the S-adic integers
    Roman Urban
    Czechoslovak Mathematical Journal, 2014, 64 : 911 - 931
  • [9] S-adic characterization of minimal ternary dendric shifts
    Gheeraert, France
    Lejeune, Marie
    Leroy, Julien
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2022, 42 (11) : 3393 - 3432
  • [10] Equidistribution in the dual group of the S-adic integers
    Urban, Roman
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2014, 64 (04) : 911 - 931