Equidistribution in the dual group of the S-adic integers

被引:0
|
作者
Roman Urban
机构
[1] Wrocław University,Institute of Mathematics
来源
关键词
uniform distribution modulo 1; equidistribution in probability; algebraic number fields; -adele ring; -integer dynamical system; algebraic dynamics; topological dynamics; -adic solenoid; 11J71; 11K06; 54H20;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be the quotient group of the S-adele ring of an algebraic number field by the discrete group of S-integers. Given a probability measure µ on Xd and an endomorphism T of Xd, we consider the relation between uniform distribution of the sequence Tnx for µ-almost all x ∈ Xd and the behavior of µ relative to the translations by some rational subgroups of Xd. The main result of this note is an extension of the corresponding result for the d-dimensional torus Td due to B.Host.
引用
收藏
页码:911 / 931
页数:20
相关论文
共 50 条
  • [1] Equidistribution in the dual group of the S-adic integers
    Urban, Roman
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2014, 64 (04) : 911 - 931
  • [2] On the dimension group of unimodular S-adic subshifts
    Berthe, V
    Bernales, P. Cecchi
    Durand, F.
    Leroy, J.
    Perrin, D.
    Petite, S.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2021, 194 (04): : 687 - 717
  • [3] On the density of S-adic integers near some projective G-varieties
    Lazar, Youssef
    [J]. ANNALES FENNICI MATHEMATICI, 2023, 48 (01): : 187 - 204
  • [4] THE ABSOLUTE GALOIS GROUP OF THE FIELD OF TOTALLY S-ADIC NUMBERS
    Haran, Dan
    Jarden, Moshe
    Pop, Florian
    [J]. NAGOYA MATHEMATICAL JOURNAL, 2009, 194 : 91 - 147
  • [5] On the automorphism group of minimal S-adic subshifts of finite alphabet rank
    Espinoza, Bastian
    Maass, Alejandro
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2021, : 2800 - 2822
  • [6] THE ABSOLUTE GALOIS GROUP OF SUBFIELDS OF THE FIELD OF TOTALLY S-ADIC NUMBERS
    Haran, Dan
    Jarden, Moshe
    Pop, Florian
    [J]. FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2012, 46 (02) : 205 - 223
  • [7] Some improvements of the S-adic conjecture
    Leroy, Julien
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2012, 48 (01) : 79 - 98
  • [8] S-adic conjecture and Bratteli diagrams
    Durand, Fabien
    Leroy, Julien
    [J]. COMPTES RENDUS MATHEMATIQUE, 2012, 350 (21-22) : 979 - 983
  • [9] Lattices in S-adic Lie Groups
    Benoist, Yves
    Quint, Jean-Francois
    [J]. JOURNAL OF LIE THEORY, 2014, 24 (01) : 179 - 197
  • [10] GEOMETRY, DYNAMICS, AND ARITHMETIC OF S-ADIC SHIFTS
    Berthe, Valerie
    Steiner, Wolfgang
    Thuswaldner, Jorg M.
    [J]. ANNALES DE L INSTITUT FOURIER, 2019, 69 (03) : 1347 - 1409