THE ABSOLUTE GALOIS GROUP OF SUBFIELDS OF THE FIELD OF TOTALLY S-ADIC NUMBERS

被引:3
|
作者
Haran, Dan [1 ]
Jarden, Moshe [1 ]
Pop, Florian [2 ]
机构
[1] Tel Aviv Univ, Sch Math, IL-69978 Tel Aviv, Israel
[2] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
Hilbertian field; local primes; totally S-adic numbers; Haar measure; absolute Galois group; free product;
D O I
10.7169/facm/2012.46.2.6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a finite set S of local primes of a countable Hilbertian field K and for sigma(1),...,sigma(e) is an element of Gal(K) we denote the field of totally S-adic numbers by K-tot,(S), the fixed field of sigma(1),...,sigma(e) in K-tot,(S) by K-tot,K-S (sigma), and the maximal Galois extension of K in K-tot,K-S(sigma) by K-tot,K-S [sigma]. We prove that for almost all sigma is an element of Gal(K)(e) the absolute Galois group of K-tot,K-S [sigma] is isomorphic to the free product of (F) over cap (omega) and a free product of local factors over S.
引用
收藏
页码:205 / 223
页数:19
相关论文
共 39 条
  • [1] THE ABSOLUTE GALOIS GROUP OF THE FIELD OF TOTALLY S-ADIC NUMBERS
    Haran, Dan
    Jarden, Moshe
    Pop, Florian
    [J]. NAGOYA MATHEMATICAL JOURNAL, 2009, 194 : 91 - 147
  • [2] ABSOLUTE GALOIS GROUP OF THE TOTALLY-REAL NUMBERS
    FRIED, MD
    HARAN, D
    VOLKLEIN, H
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (11): : 995 - 999
  • [3] TOTALLY REAL SUBFIELDS OF P-ADIC FIELDS HAVING SYMMETRIC GROUP AS GALOIS GROUP
    KLEIMAN, H
    [J]. CANADIAN MATHEMATICAL BULLETIN, 1971, 14 (03): : 441 - &
  • [4] The absolute Galois group of a p-adic field
    Jarden, Moshe
    Shusterman, Mark
    [J]. MATHEMATISCHE ANNALEN, 2023, 386 (3-4) : 1595 - 1603
  • [5] THE ABSOLUTE GALOIS GROUP OF A P-ADIC NUMBER-FIELD
    NEUKIRCH, J
    [J]. ASTERISQUE, 1982, (94) : 153 - 164
  • [6] Finiteness for crystalline representations of the absolute Galois group of a totally real field
    Choi, Dohoon
    Choi, Suh Hyun
    [J]. JOURNAL OF NUMBER THEORY, 2020, 209 : 312 - 329
  • [7] On the dimension group of unimodular S-adic subshifts
    Berthe, V
    Bernales, P. Cecchi
    Durand, F.
    Leroy, J.
    Perrin, D.
    Petite, S.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2021, 194 (04): : 687 - 717
  • [8] Equidistribution in the dual group of the S-adic integers
    Roman Urban
    [J]. Czechoslovak Mathematical Journal, 2014, 64 : 911 - 931
  • [9] THE ELEMENTARY THEORY OF LARGE FIELDS OF TOTALLY S-ADIC NUMBER
    Fehm, Arno
    [J]. JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2017, 16 (01) : 121 - 154
  • [10] Equidistribution in the dual group of the S-adic integers
    Urban, Roman
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2014, 64 (04) : 911 - 931