Some improvements of the S-adic conjecture

被引:12
|
作者
Leroy, Julien [1 ]
机构
[1] Univ Picardie Jules Verne, Lab Amienois Math Fondamentales & Appl, CNRS, UMR 6140, F-80039 Amiens, France
关键词
S-adic; Rauzy graph; Factor complexity; Special factor; COMPLEXITY 2N+1; MORPHISMS; SEQUENCES; SYSTEMS; NUMBER;
D O I
10.1016/j.aam.2011.03.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In [S. Ferenczi, Rank and symbolic complexity. Ergodic Theory Dynam. Systems 16 (1996) 663-682], S. Ferenczi proved that the language of any uniformly recurrent sequence with an at most linear complexity is S-adic. In this paper we adapt his proof in a more structured way and improve this result stating that any such sequence is itself S-adic. We also give some properties on the constructed morphisms. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:79 / 98
页数:20
相关论文
共 50 条
  • [1] S-adic conjecture and Bratteli diagrams
    Durand, Fabien
    Leroy, Julien
    [J]. COMPTES RENDUS MATHEMATIQUE, 2012, 350 (21-22) : 979 - 983
  • [2] The S-adic Pisot conjecture on two letters
    Berthe, Valerie
    Minervino, Milton
    Steiner, Wolfgang
    Thuswaldner, Joerg
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2016, 205 : 47 - 57
  • [3] Lattices in S-adic Lie Groups
    Benoist, Yves
    Quint, Jean-Francois
    [J]. JOURNAL OF LIE THEORY, 2014, 24 (01) : 179 - 197
  • [4] GEOMETRY, DYNAMICS, AND ARITHMETIC OF S-ADIC SHIFTS
    Berthe, Valerie
    Steiner, Wolfgang
    Thuswaldner, Jorg M.
    [J]. ANNALES DE L INSTITUT FOURIER, 2019, 69 (03) : 1347 - 1409
  • [5] On the dimension group of unimodular S-adic subshifts
    Berthe, V
    Bernales, P. Cecchi
    Durand, F.
    Leroy, J.
    Perrin, D.
    Petite, S.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2021, 194 (04): : 687 - 717
  • [6] Geometric representation of the infimax S-adic family
    Boyland, Philip
    Severa, William
    [J]. FUNDAMENTA MATHEMATICAE, 2018, 240 (01) : 15 - 50
  • [7] Bispecial Factors in the Brun S-Adic System
    Labbe, Sebastien
    Leroy, Julien
    [J]. DEVELOPMENTS IN LANGUAGE THEORY, DLT 2016, 2016, 9840 : 280 - 292
  • [8] Equidistribution in the dual group of the S-adic integers
    Roman Urban
    [J]. Czechoslovak Mathematical Journal, 2014, 64 : 911 - 931
  • [9] Measure transfer and S-adic developments for subshifts
    Bedaride, Nicolas
    Hilion, Arnaud
    Lustig, Martin
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2024,
  • [10] On the density of S-adic integers near some projective G-varieties
    Lazar, Youssef
    [J]. ANNALES FENNICI MATHEMATICI, 2023, 48 (01): : 187 - 204