On the automorphism group of minimal S-adic subshifts of finite alphabet rank

被引:0
|
作者
Espinoza, Bastian [1 ,2 ,3 ,4 ]
Maass, Alejandro [1 ,2 ,3 ]
机构
[1] Univ Chile, Dept Ingn Matemat, Beauchef 851, Santiago, Chile
[2] Univ Chile, Ctr Modelamiento Matemat, Beauchef 851, Santiago, Chile
[3] IRL CNRS 2807, Beauchef 851, Santiago, Chile
[4] Univ Picardie Jules Verne, Lab Arnienois Math Fondamentale & Appl, CNRS, UMR 7352, 33 Rue St Leu, F-80039 Amiens, France
关键词
S-adic subshifts; automorphism group; minimal Cantor systems; finite topological rank; DIAGRAMS; SHIFT;
D O I
10.1017/etds.2021.64
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It has been recently proved that the automorphism group of a minimal subshift with non-superlinear word complexity is virtually Z [Cyr and Kra. The automorphism group of a shift of linear growth: beyond transitivity. Forum Math. Sigma 3 (2015), e5; Donoso et al. On automorphism groups of low complexity subshifts. Ergod. Th. & Dynam. Sys. 36(1) (2016), 64-95]. In this article we extend this result to a broader class proving that the automorphism group of a minimal S-adic subshift of finite alphabet rank is virtually Z. The proof is based on a fine combinatorial analysis of the asymptotic classes in this type of subshifts, which we prove are a finite number.
引用
收藏
页码:2800 / 2822
页数:23
相关论文
共 40 条