Symbolic factors of S-adic subshifts of finite alphabet rank

被引:4
|
作者
Espinoza, Bastian [1 ,2 ]
机构
[1] Univ Chile, Dept Ingn Matemat, Beauchef 851, Santiago, Chile
[2] Univ Chile, Ctr Modelamiento Matemat, Beauchef 851, Santiago, Chile
关键词
topological rank; S-adic representations; substitutional systems; BRATTELI-VERSHIK MODELS; CANTOR MINIMAL SYSTEMS; DIAGRAMS;
D O I
10.1017/etds.2022.21
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies several aspects of symbolic (i.e. subshift) factors of S-adic subshifts of finite alphabet rank. First, we address a problem raised by Donoso et al [Interplay between finite topological rank minimal Cantor systems, S-adic subshifts and their complexity. Trans. Amer. Math. Soc. 374(5) (2021), 3453-3489] about the topological rank of symbolic factors of S-adic subshifts and prove that this rank is at most the one of the extension system, improving on the previous results [B. Espinoza. On symbolic factors of S-adic subshifts of finite alphabet rank. Preprint, 2022, arXiv:2008.13689v2; N. Golestani and M. Hosseini. On topological rank of factors of Cantor minimal systems. Ergod. Th. & Dynam. Sys. doi:10.1017/etds.2021.62. Published online 8 June 2021]. As a consequence of our methods, we prove that finite topological rank systems are coalescent. Second, we investigate the structure of fibers pi(-1) (gamma) of factor maps pi : (X, T) -> (Y, S) between minimal S-adic subshifts of finite alphabet rank and show that they have the same finite cardinality for all gamma in a residual subset of 1 7 . Finally, we prove that the number of symbolic factors (up to conjugacy) of a fixed subshift of finite topological rank is finite, thus extending Durand's similar theorem on linearly recurrent subshifts [F. Durand. Linearly recurrent subshifts have a finite number of non-periodic subshift factors. Ergod. Th. & Dynam. Sys. 20(4) (2000), 1061-1078].
引用
收藏
页码:1511 / 1547
页数:37
相关论文
共 50 条
  • [1] On the automorphism group of minimal S-adic subshifts of finite alphabet rank
    Espinoza, Bastian
    Maass, Alejandro
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2021, : 2800 - 2822
  • [2] INTERPLAY BETWEEN FINITE TOPOLOGICAL RANK MINIMAL CANTOR SYSTEMS, S-ADIC SUBSHIFTS AND THEIR COMPLEXITY
    Donoso, Sebastian
    Durand, Fabien
    Maass, Alejandro
    Petite, Samuel
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (05) : 3453 - 3489
  • [3] On the dimension group of unimodular S-adic subshifts
    Berthe, V
    Bernales, P. Cecchi
    Durand, F.
    Leroy, J.
    Perrin, D.
    Petite, S.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2021, 194 (04): : 687 - 717
  • [4] Measure transfer and S-adic developments for subshifts
    Bedaride, Nicolas
    Hilion, Arnaud
    Lustig, Martin
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2024,
  • [5] Subshifts of finite symbolic rank
    Gao, Su
    Li, Ruiwen
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2024,
  • [6] Effective S-adic Symbolic Dynamical Systems
    Berthe, Valerie
    Fernique, Thomas
    Sablik, Mathieu
    [J]. PURSUIT OF THE UNIVERSAL, 2016, 9709 : 13 - 23
  • [7] Bispecial Factors in the Brun S-Adic System
    Labbe, Sebastien
    Leroy, Julien
    [J]. DEVELOPMENTS IN LANGUAGE THEORY, DLT 2016, 2016, 9840 : 280 - 292
  • [8] Some improvements of the S-adic conjecture
    Leroy, Julien
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2012, 48 (01) : 79 - 98
  • [9] S-adic conjecture and Bratteli diagrams
    Durand, Fabien
    Leroy, Julien
    [J]. COMPTES RENDUS MATHEMATIQUE, 2012, 350 (21-22) : 979 - 983
  • [10] Lattices in S-adic Lie Groups
    Benoist, Yves
    Quint, Jean-Francois
    [J]. JOURNAL OF LIE THEORY, 2014, 24 (01) : 179 - 197