Effective S-adic Symbolic Dynamical Systems

被引:0
|
作者
Berthe, Valerie [1 ]
Fernique, Thomas [2 ]
Sablik, Mathieu [3 ]
机构
[1] Univ Paris Diderot, CNRS, IRIF, UMR 8243, Paris, France
[2] Univ Paris 13, CNRS, LIPN, UMR 7030, Villetaneuse, France
[3] Aix Marseille Univ, I2M UMR 7373, Marseille, France
来源
PURSUIT OF THE UNIVERSAL | 2016年 / 9709卷
关键词
Symbolic dynamics; Adic map; Substitution; S-adic system; Planar tiling; Local rules; Sofic subshift; Subshift of finite type; Computable invariant measure; Effective language; MATCHING RULES; LOCAL RULES; TILINGS; SUBSTITUTIONS; DECIDABILITY;
D O I
10.1007/978-3-319-40189-8_2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We focus in this survey on effectiveness issues for S-adic subshifts and tilings. An S-adic subshift or tiling space is a dynamical system obtained by iterating an infinite composition of substitutions, where a substitution is a rule that replaces a letter by a word (that might be multi-dimensional), or a tile by a finite union of tiles. Several notions of effectiveness exist concerning S-adic subshifts and tiling spaces, such as the computability of the sequence of iterated substitutions, or the effectiveness of the language. We compare these notions and discuss effectiveness issues concerning classical properties of the associated subshifts and tiling spaces, such as the computability of shift-invariant measures and the existence of local rules (soficity). We also focus on planar tilings.
引用
收藏
页码:13 / 23
页数:11
相关论文
共 50 条
  • [1] Symbolic factors of S-adic subshifts of finite alphabet rank
    Espinoza, Bastian
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (05) : 1511 - 1547
  • [2] Some improvements of the S-adic conjecture
    Leroy, Julien
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2012, 48 (01) : 79 - 98
  • [3] S-adic conjecture and Bratteli diagrams
    Durand, Fabien
    Leroy, Julien
    [J]. COMPTES RENDUS MATHEMATIQUE, 2012, 350 (21-22) : 979 - 983
  • [4] Lattices in S-adic Lie Groups
    Benoist, Yves
    Quint, Jean-Francois
    [J]. JOURNAL OF LIE THEORY, 2014, 24 (01) : 179 - 197
  • [5] GEOMETRY, DYNAMICS, AND ARITHMETIC OF S-ADIC SHIFTS
    Berthe, Valerie
    Steiner, Wolfgang
    Thuswaldner, Jorg M.
    [J]. ANNALES DE L INSTITUT FOURIER, 2019, 69 (03) : 1347 - 1409
  • [6] On the dimension group of unimodular S-adic subshifts
    Berthe, V
    Bernales, P. Cecchi
    Durand, F.
    Leroy, J.
    Perrin, D.
    Petite, S.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2021, 194 (04): : 687 - 717
  • [7] Equidistribution in the dual group of the S-adic integers
    Roman Urban
    [J]. Czechoslovak Mathematical Journal, 2014, 64 : 911 - 931
  • [8] Bispecial Factors in the Brun S-Adic System
    Labbe, Sebastien
    Leroy, Julien
    [J]. DEVELOPMENTS IN LANGUAGE THEORY, DLT 2016, 2016, 9840 : 280 - 292
  • [9] Geometric representation of the infimax S-adic family
    Boyland, Philip
    Severa, William
    [J]. FUNDAMENTA MATHEMATICAE, 2018, 240 (01) : 15 - 50
  • [10] The S-adic Pisot conjecture on two letters
    Berthe, Valerie
    Minervino, Milton
    Steiner, Wolfgang
    Thuswaldner, Joerg
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2016, 205 : 47 - 57