S-adic characterization of minimal ternary dendric shifts

被引:2
|
作者
Gheeraert, France [1 ]
Lejeune, Marie [1 ]
Leroy, Julien [1 ]
机构
[1] Univ Liege, Dept Math, B-4000 Liege, Belgium
关键词
symbolic dynamics; substitutions; S-adic; dendric; interval exchange; return words; SEQUENCES;
D O I
10.1017/etds.2021.84
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Dendric shifts are defined by combinatorial restrictions of the extensions of the words in their languages. This family generalizes well-known families of shifts such as Sturmian shifts, Arnoux-Rauzy shifts and codings of interval exchange transformations. It is known that any minimal dendric shift has a primitive S-adic representation where the morphisms in S are positive tame automorphisms of the free group generated by the alphabet. In this paper, we investigate those S-adic representations, heading towards an S-adic characterization of this family. We obtain such a characterization in the ternary case, involving a directed graph with two vertices.
引用
收藏
页码:3393 / 3432
页数:40
相关论文
共 50 条
  • [1] GEOMETRY, DYNAMICS, AND ARITHMETIC OF S-ADIC SHIFTS
    Berthe, Valerie
    Steiner, Wolfgang
    Thuswaldner, Jorg M.
    [J]. ANNALES DE L INSTITUT FOURIER, 2019, 69 (03) : 1347 - 1409
  • [2] Torsion-free S-adic shifts and their spectrum
    Bustos-Gajardo, Alvaro
    Manibo, Neil
    Yassawi, Reem
    [J]. STUDIA MATHEMATICA, 2023, 272 (02) : 159 - 198
  • [3] On the automorphism group of minimal S-adic subshifts of finite alphabet rank
    Espinoza, Bastian
    Maass, Alejandro
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2021, : 2800 - 2822
  • [4] Some improvements of the S-adic conjecture
    Leroy, Julien
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2012, 48 (01) : 79 - 98
  • [5] S-adic conjecture and Bratteli diagrams
    Durand, Fabien
    Leroy, Julien
    [J]. COMPTES RENDUS MATHEMATIQUE, 2012, 350 (21-22) : 979 - 983
  • [6] Lattices in S-adic Lie Groups
    Benoist, Yves
    Quint, Jean-Francois
    [J]. JOURNAL OF LIE THEORY, 2014, 24 (01) : 179 - 197
  • [7] CUTTING SEQUENCES ON BOUW-MOLLER SURFACES: AN S-ADIC CHARACTERIZATION
    Davis, Diana
    Pasquinelli, Irene
    Ulcigrai, Corinna
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2019, 52 (04): : 927 - 1023
  • [8] On the dimension group of unimodular S-adic subshifts
    Berthe, V
    Bernales, P. Cecchi
    Durand, F.
    Leroy, J.
    Perrin, D.
    Petite, S.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2021, 194 (04): : 687 - 717
  • [9] Geometric representation of the infimax S-adic family
    Boyland, Philip
    Severa, William
    [J]. FUNDAMENTA MATHEMATICAE, 2018, 240 (01) : 15 - 50
  • [10] Bispecial Factors in the Brun S-Adic System
    Labbe, Sebastien
    Leroy, Julien
    [J]. DEVELOPMENTS IN LANGUAGE THEORY, DLT 2016, 2016, 9840 : 280 - 292