Deep Learning Methods for Glaucoma Identification Using Digital Fundus Images

被引:2
|
作者
Virbukaite, Sandra [1 ]
Bernataviciene, Jolita [1 ]
机构
[1] Vilnius Univ, Inst Data Sci & Digital Technol, Akad St 4, Vilnius, Lithuania
来源
BALTIC JOURNAL OF MODERN COMPUTING | 2020年 / 8卷 / 04期
关键词
Glaucoma; Fundus Images; Neural Networks;
D O I
10.22364/bjmc.2020.8.4.03
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this survey we analyzed the literature, evaluated the methods for glaucoma identification and identified the main issues faced by other researchers. From the literature it is observed that most of the computer aided diagnosis (CAD) tools for identification of pathological changes in eye fundus are in the early stage of development. The accuracy of glaucoma classification achieved by different methods ranges from 87.50% to 99.41%. However, the classification results are obtained with different data sets and different quality images. Therefore, the further research would be needed to create an algorithm using a data set contained of wider range and various quality images. Also, it is necessary to estimate the advantages and disadvantages of the existing methods and to compare the obtained classification results under the same conditions of experiments.
引用
收藏
页码:520 / 530
页数:11
相关论文
共 50 条
  • [41] Validation of a Deep Learning Model to Screen for Glaucoma Using Images from Different Fundus Cameras and Data Augmentation
    Asaoka, Ryo
    Tanito, Masaki
    Shibata, Naoto
    Mitsuhashi, Keita
    Nakahara, Kenichi
    Fujino, Yuri
    Matsuura, Masato
    Murata, Hiroshi
    Tokumo, Kana
    Kiuchi, Yoshiaki
    OPHTHALMOLOGY GLAUCOMA, 2019, 2 (04): : 224 - 231
  • [42] Automatic laterality finding using deep learning in fundus images
    Dave, Poojan
    Makedonsky, Katherine
    Manivannan, Niranchana
    Sha, Patricia
    Chen, Michael H.
    Durbin, Mary K.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (09)
  • [43] Neovascularization Detection and Localization in Fundus Images Using Deep Learning
    Tang, Michael Chi Seng
    Teoh, Soo Siang
    Ibrahim, Haidi
    Embong, Zunaina
    SENSORS, 2021, 21 (16)
  • [44] Quality and and content analysis of fundus images using deep learning
    Chalakkal, Renoh Johnson
    Abdulla, Waleed Habib
    Thulaseedharan, Sinumol Sukumaran
    COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 108 : 317 - 331
  • [45] Optic Disc Segmentation in Fundus Images Using Deep Learning
    Kim, Jongwoo
    Tran, Loc
    Chew, Emily Y.
    Antani, Sameer
    Thoma, George R.
    MEDICAL IMAGING 2019: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2019, 10954
  • [46] Segmentation of fundus eye images using methods of mathematical morphology for glaucoma diagnosis
    Stapor, K
    Switonski, A
    Chrastek, R
    Michelson, G
    COMPUTATIONAL SCIENCE - ICCS 2004, PROCEEDINGS, 2004, 3039 : 41 - 48
  • [47] Detection of Glaucoma Using Retinal Fundus Images
    Khan, Fauzia
    Khan, Shoaib A.
    Yasin, Ubaid Ullah
    ul Haq, Ihtisham
    Qamar, Usman
    6TH BIOMEDICAL ENGINEERING INTERNATIONAL CONFERENCE (BMEICON 2013), 2013,
  • [48] Automated Glaucoma Detection in Retinal Fundus Images Using Machine Learning Models
    Hegde, Nagaratna P.
    Sireesha, V.
    Kumar, S. Vinay
    Madarapu, Sathwika
    Thupakula, Sai Varshini
    JOURNAL OF ELECTRICAL SYSTEMS, 2023, 19 (04) : 298 - 314
  • [49] GLAUCOMA DETECTION USING FUNDUS IMAGES OF THE EYE
    Carrillo, Juan
    Bautista, Lola
    Villamizar, Jorge
    Rueda, Juan
    Sanchez, Mary
    Rueda, Daniela
    2019 XXII SYMPOSIUM ON IMAGE, SIGNAL PROCESSING AND ARTIFICIAL VISION (STSIVA), 2019,
  • [50] Detection of Glaucoma Using Retinal Fundus Images
    Ahmad, Hafsah
    Yamin, Abubakar
    Shakeel, Aqsa
    Gillani, Syed Omer
    Ansari, Umer
    2014 INTERNATIONAL CONFERENCE ON ROBOTICS AND EMERGING ALLIED TECHNOLOGIES IN ENGINEERING (ICREATE), 2014, : 321 - 324