Detection of Glaucoma Using Retinal Fundus Images

被引:0
|
作者
Khan, Fauzia [1 ]
Khan, Shoaib A. [1 ]
Yasin, Ubaid Ullah [1 ]
ul Haq, Ihtisham [1 ]
Qamar, Usman [1 ]
机构
[1] Natl Univ Sci & Technol, Dept Comp Engn, Islamabad, Pakistan
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper proposes image processing technique for the early detection of glaucoma. Glaucoma is one of the major causes which cause blindness but it was hard to diagnose it in early stages. In this paper glaucoma is classified by extracting two features using retinal fundus images. (i) Cup to Disc Ratio (CDR). (ii) Ratio of Neuroretinal Rim in inferior, superior, temporal and nasal quadrants i. e. (ISNT quadrants) to check whether it obeys or violates the ISNT rule. The novel technique is implemented on 50 retinal images and an accuracy of 94% is achieved taking an average computational time of 1.42 seconds.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Detection of Glaucoma Using Retinal Fundus Images
    Ahmad, Hafsah
    Yamin, Abubakar
    Shakeel, Aqsa
    Gillani, Syed Omer
    Ansari, Umer
    [J]. 2014 INTERNATIONAL CONFERENCE ON ROBOTICS AND EMERGING ALLIED TECHNOLOGIES IN ENGINEERING (ICREATE), 2014, : 321 - 324
  • [2] Glaucoma Detection with Retinal Fundus Images Using Segmentation and Classification
    Shyamalee, Thisara
    Meedeniya, Dulani
    [J]. MACHINE INTELLIGENCE RESEARCH, 2022, 19 (06) : 563 - 580
  • [3] Detection of glaucoma using retinal fundus images: A comprehensive review
    Shabbir, Amsa
    Rasheed, Aqsa
    Shehraz, Huma
    Saleem, Aliya
    Zafar, Bushra
    Sajid, Muhammad
    Ali, Nouman
    Dar, Saadat Hanif
    Shehryar, Tehmina
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (03) : 2033 - 2076
  • [4] Glaucoma Detection with Retinal Fundus Images Using Segmentation and Classification
    Thisara Shyamalee
    Dulani Meedeniya
    [J]. Machine Intelligence Research, 2022, 19 : 563 - 580
  • [5] Glaucoma Detection with Retinal Fundus Images Using Segmentation and Classification
    Thisara Shyamalee
    Dulani Meedeniya
    [J]. Machine Intelligence Research, 2022, 19 (06) : 563 - 580
  • [6] Automated detection of glaucoma from retinal fundus images using a variety of fundus cameras
    Gunasinghe, Hansi N.
    McKelvie, James
    Koay, Abigail
    Mayo, Michael
    [J]. CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2022, 49 (08): : 911 - 911
  • [7] A Review on Automatic Glaucoma Detection in Retinal Fundus Images
    Shahistha
    Vaidehi, K.
    Srilatha, J.
    [J]. DATA ENGINEERING AND COMMUNICATION TECHNOLOGY, ICDECT-2K19, 2020, 1079 : 485 - 498
  • [8] Automated Glaucoma Detection in Retinal Fundus Images Using Machine Learning Models
    Hegde, Nagaratna P.
    Sireesha, V.
    Kumar, S. Vinay
    Madarapu, Sathwika
    Thupakula, Sai Varshini
    [J]. JOURNAL OF ELECTRICAL SYSTEMS, 2023, 19 (04) : 298 - 314
  • [9] AUTOMATED GLAUCOMA DETECTION USING HYBRID FEATURE EXTRACTION IN RETINAL FUNDUS IMAGES
    Krishnan, M. Muthu Rama
    Faust, Oliver
    [J]. JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2013, 13 (01)
  • [10] GLAUCOMA DETECTION USING FUNDUS IMAGES OF THE EYE
    Carrillo, Juan
    Bautista, Lola
    Villamizar, Jorge
    Rueda, Juan
    Sanchez, Mary
    Rueda, Daniela
    [J]. 2019 XXII SYMPOSIUM ON IMAGE, SIGNAL PROCESSING AND ARTIFICIAL VISION (STSIVA), 2019,