Detection of Glaucoma Using Retinal Fundus Images

被引:0
|
作者
Ahmad, Hafsah [1 ]
Yamin, Abubakar [2 ]
Shakeel, Aqsa [1 ]
Gillani, Syed Omer [1 ]
Ansari, Umer [1 ]
机构
[1] Natl Univ Sci & Technol, Sch Mech & Mfg Engn, Islamabad, Pakistan
[2] Bahria Univ Islamabad, Comp & Software Engn Dept, Islamabad, Pakistan
关键词
Glaucoma; Cup to Disc Ratio (CDR); ISNT; Fundus Images;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes an image processing technique for the detection of glaucoma which mainly affects the optic disc by increasing the cup size. During early stages it was difficult to detect Glaucoma, which is in fact second leading cause of blindness. In this paper glaucoma is categorized through extraction of features from retinal fundus images. The features include (i) Cup to Disc Ratio (CDR), which is one of the primary physiological parameter for the diagnosis of glaucoma and (ii) Ratio of Neuroretinal Rim in inferior, superior, temporal and nasal quadrants i.e. (ISNT quadrants) for verification of the ISNT rule. The novel technique is implemented on 80 retinal images and an accuracy of 97.5% is achieved taking an average computational time of 0.8141 seconds.
引用
收藏
页码:321 / 324
页数:4
相关论文
共 50 条
  • [1] Detection of Glaucoma Using Retinal Fundus Images
    Khan, Fauzia
    Khan, Shoaib A.
    Yasin, Ubaid Ullah
    ul Haq, Ihtisham
    Qamar, Usman
    [J]. 6TH BIOMEDICAL ENGINEERING INTERNATIONAL CONFERENCE (BMEICON 2013), 2013,
  • [2] Glaucoma Detection with Retinal Fundus Images Using Segmentation and Classification
    Shyamalee, Thisara
    Meedeniya, Dulani
    [J]. MACHINE INTELLIGENCE RESEARCH, 2022, 19 (06) : 563 - 580
  • [3] Detection of glaucoma using retinal fundus images: A comprehensive review
    Shabbir, Amsa
    Rasheed, Aqsa
    Shehraz, Huma
    Saleem, Aliya
    Zafar, Bushra
    Sajid, Muhammad
    Ali, Nouman
    Dar, Saadat Hanif
    Shehryar, Tehmina
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (03) : 2033 - 2076
  • [4] Glaucoma Detection with Retinal Fundus Images Using Segmentation and Classification
    Thisara Shyamalee
    Dulani Meedeniya
    [J]. Machine Intelligence Research, 2022, 19 : 563 - 580
  • [5] Glaucoma Detection with Retinal Fundus Images Using Segmentation and Classification
    Thisara Shyamalee
    Dulani Meedeniya
    [J]. Machine Intelligence Research, 2022, 19 (06) : 563 - 580
  • [6] Automated detection of glaucoma from retinal fundus images using a variety of fundus cameras
    Gunasinghe, Hansi N.
    McKelvie, James
    Koay, Abigail
    Mayo, Michael
    [J]. CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2022, 49 (08): : 911 - 911
  • [7] A Review on Automatic Glaucoma Detection in Retinal Fundus Images
    Shahistha
    Vaidehi, K.
    Srilatha, J.
    [J]. DATA ENGINEERING AND COMMUNICATION TECHNOLOGY, ICDECT-2K19, 2020, 1079 : 485 - 498
  • [8] Automated Glaucoma Detection in Retinal Fundus Images Using Machine Learning Models
    Hegde, Nagaratna P.
    Sireesha, V.
    Kumar, S. Vinay
    Madarapu, Sathwika
    Thupakula, Sai Varshini
    [J]. JOURNAL OF ELECTRICAL SYSTEMS, 2023, 19 (04) : 298 - 314
  • [9] AUTOMATED GLAUCOMA DETECTION USING HYBRID FEATURE EXTRACTION IN RETINAL FUNDUS IMAGES
    Krishnan, M. Muthu Rama
    Faust, Oliver
    [J]. JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2013, 13 (01)
  • [10] GLAUCOMA DETECTION USING FUNDUS IMAGES OF THE EYE
    Carrillo, Juan
    Bautista, Lola
    Villamizar, Jorge
    Rueda, Juan
    Sanchez, Mary
    Rueda, Daniela
    [J]. 2019 XXII SYMPOSIUM ON IMAGE, SIGNAL PROCESSING AND ARTIFICIAL VISION (STSIVA), 2019,