Deep Learning Methods for Glaucoma Identification Using Digital Fundus Images

被引:2
|
作者
Virbukaite, Sandra [1 ]
Bernataviciene, Jolita [1 ]
机构
[1] Vilnius Univ, Inst Data Sci & Digital Technol, Akad St 4, Vilnius, Lithuania
来源
BALTIC JOURNAL OF MODERN COMPUTING | 2020年 / 8卷 / 04期
关键词
Glaucoma; Fundus Images; Neural Networks;
D O I
10.22364/bjmc.2020.8.4.03
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this survey we analyzed the literature, evaluated the methods for glaucoma identification and identified the main issues faced by other researchers. From the literature it is observed that most of the computer aided diagnosis (CAD) tools for identification of pathological changes in eye fundus are in the early stage of development. The accuracy of glaucoma classification achieved by different methods ranges from 87.50% to 99.41%. However, the classification results are obtained with different data sets and different quality images. Therefore, the further research would be needed to create an algorithm using a data set contained of wider range and various quality images. Also, it is necessary to estimate the advantages and disadvantages of the existing methods and to compare the obtained classification results under the same conditions of experiments.
引用
收藏
页码:520 / 530
页数:11
相关论文
共 50 条
  • [21] Effect of color information on the diagnostic performance of glaucoma in deep learning using few fundus images
    Hirota, Masakazu
    Mizota, Atsushi
    Mimura, Tatsuya
    Hayashi, Takao
    Kotoku, Junichi
    Sawa, Tomohiro
    Inoue, Kenji
    [J]. INTERNATIONAL OPHTHALMOLOGY, 2020, 40 (11) : 3013 - 3022
  • [22] Detecting glaucoma from fundus images using ensemble learning
    Kurilova, Veronika
    Rajcsanyi, Szabolcs
    Rabekova, Zuzana
    Pavlovicova, Jarmila
    Oravec, Milos
    Majtanova, Nora
    [J]. JOURNAL OF ELECTRICAL ENGINEERING-ELEKTROTECHNICKY CASOPIS, 2023, 74 (04): : 328 - 335
  • [23] Finding Glaucoma in Color Fundus Photographs Using Deep Learning
    Bojikian, Karine D.
    Lee, Cecilia S.
    Lee, Aaron Y.
    [J]. JAMA OPHTHALMOLOGY, 2019, 137 (12) : 1361 - 1362
  • [24] A Comparative Study of Deep Learning Models for Diagnosing Glaucoma From Fundus Images
    Alghamdi, Manal
    Abdel-Mottaleb, Mohamed
    [J]. IEEE ACCESS, 2021, 9 : 23894 - 23906
  • [25] ODGNet: a deep learning model for automated optic disc localization and glaucoma classification using fundus images
    Jahanzaib Latif
    Shanshan Tu
    Chuangbai Xiao
    Sadaqat Ur Rehman
    Azhar Imran
    Yousaf Latif
    [J]. SN Applied Sciences, 2022, 4
  • [26] ODGNet: a deep learning model for automated optic disc localization and glaucoma classification using fundus images
    Latif, Jahanzaib
    Tu, Shanshan
    Xiao, Chuangbai
    Rehman, Sadaqat Ur
    Imran, Azhar
    Latif, Yousaf
    [J]. SN APPLIED SCIENCES, 2022, 4 (04)
  • [27] A Review of Image Processing and Deep Learning Based Methods for Automated Analysis of Digital Retinal Fundus Images
    Braovic, Maja
    Bozic-Stulic, Dunja
    Stipanicev, Darko
    [J]. 2018 3RD INTERNATIONAL CONFERENCE ON SMART AND SUSTAINABLE TECHNOLOGIES (SPLITECH), 2018, : 17 - 22
  • [28] Automated Tool Support for Glaucoma Identification With Explainability Using Fundus Images
    Shyamalee, Thisara
    Meedeniya, Dulani
    Lim, Gilbert
    Karunarathne, Mihipali
    [J]. IEEE ACCESS, 2024, 12 : 17290 - 17307
  • [29] Glaucoma Identification on Fundus Retinal Images Using Statistical Modelling Approach
    Anwar, A. E.
    Chamidah, N.
    [J]. 9TH ANNUAL BASIC SCIENCE INTERNATIONAL CONFERENCE 2019 (BASIC 2019), 2019, 546
  • [30] Automatic glaucoma detection from fundus images using transfer learning
    Patil, Rajeshwar
    Sharma, Sanjeev
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (32) : 78207 - 78226