Deep Learning Methods for Glaucoma Identification Using Digital Fundus Images

被引:2
|
作者
Virbukaite, Sandra [1 ]
Bernataviciene, Jolita [1 ]
机构
[1] Vilnius Univ, Inst Data Sci & Digital Technol, Akad St 4, Vilnius, Lithuania
来源
BALTIC JOURNAL OF MODERN COMPUTING | 2020年 / 8卷 / 04期
关键词
Glaucoma; Fundus Images; Neural Networks;
D O I
10.22364/bjmc.2020.8.4.03
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this survey we analyzed the literature, evaluated the methods for glaucoma identification and identified the main issues faced by other researchers. From the literature it is observed that most of the computer aided diagnosis (CAD) tools for identification of pathological changes in eye fundus are in the early stage of development. The accuracy of glaucoma classification achieved by different methods ranges from 87.50% to 99.41%. However, the classification results are obtained with different data sets and different quality images. Therefore, the further research would be needed to create an algorithm using a data set contained of wider range and various quality images. Also, it is necessary to estimate the advantages and disadvantages of the existing methods and to compare the obtained classification results under the same conditions of experiments.
引用
收藏
页码:520 / 530
页数:11
相关论文
共 50 条
  • [31] Automated Detection of Suspected Glaucoma in Digital Fundus Images
    Sengar, Namita
    Dutta, Malay Kishore
    Burget, Radim
    Ranjoha, Martin
    [J]. 2017 40TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2017, : 749 - 752
  • [32] Automatic Glaucoma Diagnosis in Digital Fundus images using Convolutional Neural Network
    Sharma, Ambika
    Aggarwal, Monika
    Roy, Sumantra Dutta
    Gupta, Vivek
    [J]. PROCEEDINGS OF 2019 5TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMPUTING AND CONTROL (ISPCC 2K19), 2019, : 160 - 165
  • [33] A generalizable deep learning regression model for automated glaucoma screening from fundus images
    Hemelings, Ruben
    Elen, Bart
    Schuster, Alexander K.
    Blaschko, Matthew B.
    Barbosa-Breda, Joao
    Hujanen, Pekko
    Junglas, Annika
    Nickels, Stefan
    White, Andrew
    Pfeiffer, Norbert
    Mitchell, Paul
    De Boever, Patrick
    Tuulonen, Anja
    Stalmans, Ingeborg
    [J]. NPJ DIGITAL MEDICINE, 2023, 6 (01)
  • [34] A generalizable deep learning regression model for automated glaucoma screening from fundus images
    Ruben Hemelings
    Bart Elen
    Alexander K. Schuster
    Matthew B. Blaschko
    João Barbosa-Breda
    Pekko Hujanen
    Annika Junglas
    Stefan Nickels
    Andrew White
    Norbert Pfeiffer
    Paul Mitchell
    Patrick De Boever
    Anja Tuulonen
    Ingeborg Stalmans
    [J]. npj Digital Medicine, 6
  • [35] Multi-task deep learning for glaucoma detection from color fundus images
    Pascal, Lucas
    Perdomo, Oscar J.
    Bost, Xavier
    Huet, Benoit
    Otalora, Sebastian
    Zuluaga, Maria A.
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [36] Author Correction: Deep learning on fundus images detects glaucoma beyond the optic disc
    Ruben Hemelings
    Bart Elen
    João Barbosa-Breda
    Matthew B. Blaschko
    Patrick De Boever
    Ingeborg Stalmans
    [J]. Scientific Reports, 13
  • [37] Multi-task deep learning for glaucoma detection from color fundus images
    Lucas Pascal
    Oscar J. Perdomo
    Xavier Bost
    Benoit Huet
    Sebastian Otálora
    Maria A. Zuluaga
    [J]. Scientific Reports, 12
  • [38] Detection of Glaucoma on Fundus Images Using Deep Learning on a New Image Set Obtained with a Smartphone and Handheld Ophthalmoscope
    Braganca, Clerimar Paulo
    Torres, Jose Manuel
    Soares, Christophe Pinto de Almeida
    Macedo, Luciano Oliveira
    [J]. HEALTHCARE, 2022, 10 (12)
  • [39] Automated Glaucoma Screening and Diagnosis Based on Retinal Fundus Images Using Deep Learning Approaches: A Comprehensive Review
    Zedan, Mohammad J. M.
    Zulkifley, Mohd Asyraf
    Ibrahim, Ahmad Asrul
    Moubark, Asraf Mohamed
    Kamari, Nor Azwan Mohamed
    Abdani, Siti Raihanah
    [J]. DIAGNOSTICS, 2023, 13 (13)
  • [40] Validation of a Deep Learning Model to Screen for Glaucoma Using Images from Different Fundus Cameras and Data Augmentation
    Asaoka, Ryo
    Tanito, Masaki
    Shibata, Naoto
    Mitsuhashi, Keita
    Nakahara, Kenichi
    Fujino, Yuri
    Matsuura, Masato
    Murata, Hiroshi
    Tokumo, Kana
    Kiuchi, Yoshiaki
    [J]. OPHTHALMOLOGY GLAUCOMA, 2019, 2 (04): : 224 - 231