Automatic glaucoma detection from fundus images using transfer learning

被引:6
|
作者
Patil, Rajeshwar [1 ]
Sharma, Sanjeev [1 ]
机构
[1] Indian Inst Informat Technol, Pune, India
关键词
Glaucoma classification; Computer vision; Transfer learning; Deep learning; NEURAL-NETWORK; DIAGNOSIS;
D O I
10.1007/s11042-024-18242-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Glaucoma is an eye disease that damages the optic nerve (or retina) and impairs vision. This disease can be prevented with regular checkups, but this increases the workload for professionals and the time it takes to get results. So an automated method using deep learning would be helpful for detection of disease. In order to shorten the diagnosis time for glaucoma, this paper proposed a deep learning based method for automatic glaucoma detection. The experiments are conducted on glaucoma datasets available on Kaggle. This paper used transfer learning based pretrained models namely DenseNet169, MobileNet, InceptionV3, Xception, ReseNet152V2,and VGG19. Among all models DenseNet169 gives best result with accuracy 0.993590 and precision and recall of 0.993671 and 0.9935895 respectively. A comparison of the best model results with existing work shows that the proposed model provides better results.
引用
收藏
页码:78207 / 78226
页数:20
相关论文
共 50 条
  • [1] Automatic Glaucoma Detection from Stereo Fundus Images
    Ong, Ee Ping
    Cheng, Jun
    Wong, Damon W. K.
    Tay, Elton L. T.
    Teo, Hwei Yee
    Loo, Rosalyn Grace
    Yip, Leonard W. L.
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 1540 - 1543
  • [2] Machine learning for glaucoma detection using fundus images
    Elmoufidi A.
    Hossi A.E.
    Nachaoui M.
    Research on Biomedical Engineering, 2023, 39 (04) : 819 - 831
  • [3] Automatic Detection of Diabetic Hypertensive Retinopathy in Fundus Images Using Transfer Learning
    Nagpal, Dimple
    Alsubaie, Najah
    Soufiene, Ben Othman
    Alqahtani, Mohammed S.
    Abbas, Mohamed
    Almohiy, Hussain M.
    APPLIED SCIENCES-BASEL, 2023, 13 (08):
  • [4] Detection of microscopic glaucoma through fundus images using deep transfer learning approach
    Akbar, Shahzad
    Hassan, Syed Ale
    Shoukat, Ayesha
    Alyami, Jaber
    Bahaj, Saeed Ali
    MICROSCOPY RESEARCH AND TECHNIQUE, 2022, 85 (06) : 2259 - 2276
  • [5] A Deep Learning-based Automatic Method for Early Detection of the Glaucoma using Fundus Images
    Shoukat, Ayesha
    Akbar, Shahzad
    Safdar, Khadij A.
    4TH INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING (IC)2, 2021, : 391 - 396
  • [6] Automatic Detection of Glaucoma Using Transfer Learning
    Addou, Mohammed
    Mermri, El Bekkaye
    Gabli, Mohammed
    ADVANCES IN SMART MEDICAL, IOT & ARTIFICIAL INTELLIGENCE, VOL 1, ICSMAI 2024, 2024, 11 : 273 - 280
  • [7] A Review on Automatic Glaucoma Detection in Retinal Fundus Images
    Shahistha
    Vaidehi, K.
    Srilatha, J.
    DATA ENGINEERING AND COMMUNICATION TECHNOLOGY, ICDECT-2K19, 2020, 1079 : 485 - 498
  • [8] Automatic glaucoma classification using color fundus images based on convolutional neural networks and transfer learning
    Gomez-Valverde, Juan J.
    Anton, Alfonso
    Fatti, Gianluca
    Liefers, Bart
    Herranz, Alejandra
    Santos, Andres
    Sanchez, Clara, I
    Ledesma-Carbay, Maria J.
    BIOMEDICAL OPTICS EXPRESS, 2019, 10 (02): : 892 - 913
  • [9] A Review of Glaucoma Detection from Digital Fundus Images using Machine Learning Techniques
    Stefan, Ana-Maria
    Paraschiv, Elena-Anca
    Ovreiu, Silvia
    Ovreiu, Elena
    2020 INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING (EHB), 2020,
  • [10] Detecting glaucoma from fundus images using ensemble learning
    Kurilova, Veronika
    Rajcsanyi, Szabolcs
    Rabekova, Zuzana
    Pavlovicova, Jarmila
    Oravec, Milos
    Majtanova, Nora
    JOURNAL OF ELECTRICAL ENGINEERING-ELEKTROTECHNICKY CASOPIS, 2023, 74 (04): : 328 - 335