Automatic glaucoma detection from fundus images using transfer learning

被引:6
|
作者
Patil, Rajeshwar [1 ]
Sharma, Sanjeev [1 ]
机构
[1] Indian Inst Informat Technol, Pune, India
关键词
Glaucoma classification; Computer vision; Transfer learning; Deep learning; NEURAL-NETWORK; DIAGNOSIS;
D O I
10.1007/s11042-024-18242-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Glaucoma is an eye disease that damages the optic nerve (or retina) and impairs vision. This disease can be prevented with regular checkups, but this increases the workload for professionals and the time it takes to get results. So an automated method using deep learning would be helpful for detection of disease. In order to shorten the diagnosis time for glaucoma, this paper proposed a deep learning based method for automatic glaucoma detection. The experiments are conducted on glaucoma datasets available on Kaggle. This paper used transfer learning based pretrained models namely DenseNet169, MobileNet, InceptionV3, Xception, ReseNet152V2,and VGG19. Among all models DenseNet169 gives best result with accuracy 0.993590 and precision and recall of 0.993671 and 0.9935895 respectively. A comparison of the best model results with existing work shows that the proposed model provides better results.
引用
收藏
页码:78207 / 78226
页数:20
相关论文
共 50 条
  • [31] Glaucoma Detection with Retinal Fundus Images Using Segmentation and Classification
    Shyamalee, Thisara
    Meedeniya, Dulani
    MACHINE INTELLIGENCE RESEARCH, 2022, 19 (06) : 563 - 580
  • [32] Detection of glaucoma using retinal fundus images: A comprehensive review
    Shabbir, Amsa
    Rasheed, Aqsa
    Shehraz, Huma
    Saleem, Aliya
    Zafar, Bushra
    Sajid, Muhammad
    Ali, Nouman
    Dar, Saadat Hanif
    Shehryar, Tehmina
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (03) : 2033 - 2076
  • [33] Glaucoma Detection with Retinal Fundus Images Using Segmentation and Classification
    Thisara Shyamalee
    Dulani Meedeniya
    Machine Intelligence Research, 2022, 19 : 563 - 580
  • [34] Glaucoma Detection with Retinal Fundus Images Using Segmentation and Classification
    Thisara Shyamalee
    Dulani Meedeniya
    Machine Intelligence Research, 2022, 19 (06) : 563 - 580
  • [35] Automatic Glaucoma Detection from Fundus Images Using Deep Convolutional Neural Networks and Exploring Networks Behaviour Using Visualization Techniques
    Velpula V.K.
    Sharma L.D.
    SN Computer Science, 4 (5)
  • [36] Glaucoma risk index: Automated glaucoma detection from color fundus images
    Bock, Ruediger
    Meier, Joerg
    Nyul, Laszlo G.
    Hornegger, Joachim
    Michelson, Georg
    MEDICAL IMAGE ANALYSIS, 2010, 14 (03) : 471 - 481
  • [37] Performance Analysis Of Glaucoma Detection Approaches From Fundus Images
    Divya, L.
    Jacob, Jaison
    8TH INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING & COMMUNICATIONS (ICACC-2018), 2018, 143 : 544 - 551
  • [38] Automatic Detection of Peripheral Retinal Lesions From Ultrawide-Field Fundus Images Using Deep Learning
    Tang, Yi-Wen
    Ji, Jie
    Lin, Jian-Wei
    Wang, Ji
    Wang, Yun
    Liu, Zibo
    Hu, Zhanchi
    Yang, Jian-Feng
    Ng, Tsz Kin
    Zhang, Mingzhi
    Pang, Chi Pui
    Cen, Ling-Ping
    ASIA-PACIFIC JOURNAL OF OPHTHALMOLOGY, 2023, 12 (03): : 284 - 292
  • [39] Automatic Glaucoma Diagnosis in Digital Fundus images using Convolutional Neural Network
    Sharma, Ambika
    Aggarwal, Monika
    Roy, Sumantra Dutta
    Gupta, Vivek
    PROCEEDINGS OF 2019 5TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMPUTING AND CONTROL (ISPCC 2K19), 2019, : 160 - 165
  • [40] Automatic Detection of Microaneurysms in Fundus Images
    Astorga, Jesus Eduardo Ochoa
    Wang, Linni
    Yamada, Shuhei
    Fujiwara, Yusuke
    Du, Weiwei
    Peng, Yahui
    INTERNATIONAL JOURNAL OF SOFTWARE INNOVATION, 2023, 11 (01) : 26 - 26