Automatic glaucoma detection from fundus images using transfer learning

被引:6
|
作者
Patil, Rajeshwar [1 ]
Sharma, Sanjeev [1 ]
机构
[1] Indian Inst Informat Technol, Pune, India
关键词
Glaucoma classification; Computer vision; Transfer learning; Deep learning; NEURAL-NETWORK; DIAGNOSIS;
D O I
10.1007/s11042-024-18242-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Glaucoma is an eye disease that damages the optic nerve (or retina) and impairs vision. This disease can be prevented with regular checkups, but this increases the workload for professionals and the time it takes to get results. So an automated method using deep learning would be helpful for detection of disease. In order to shorten the diagnosis time for glaucoma, this paper proposed a deep learning based method for automatic glaucoma detection. The experiments are conducted on glaucoma datasets available on Kaggle. This paper used transfer learning based pretrained models namely DenseNet169, MobileNet, InceptionV3, Xception, ReseNet152V2,and VGG19. Among all models DenseNet169 gives best result with accuracy 0.993590 and precision and recall of 0.993671 and 0.9935895 respectively. A comparison of the best model results with existing work shows that the proposed model provides better results.
引用
收藏
页码:78207 / 78226
页数:20
相关论文
共 50 条
  • [41] Automatic laterality finding using deep learning in fundus images
    Dave, Poojan
    Makedonsky, Katherine
    Manivannan, Niranchana
    Sha, Patricia
    Chen, Michael H.
    Durbin, Mary K.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (09)
  • [42] Mimetic finite difference methods for restoration of fundus images for automatic detection of glaucoma suspects
    Villamizar, Jorge
    Calderon, Giovanni
    Carrillo, Julio
    Bautista Rozo, Lola
    Carrillo, Juan
    Rueda, Juan
    Castillo, Jose
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2022, 10 (05): : 492 - 499
  • [43] An Approach Towards Automatic Detection of Toxoplasmosis using Fundus Images
    Chakravarthy, Adithi D.
    Abeyrathna, Dilanga
    Subramaniam, Mahadevan
    Chundi, Parvathi
    Halim, Muhammad Sohail
    Hasanreisoglu, Murat
    Sepah, Yasir J.
    Quan Dong Nguyen
    2019 IEEE 19TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE), 2019, : 710 - 717
  • [44] Automatic detection and grading of diabetic maculopathy using fundus images
    Rajput, G. G.
    Reshmi, B. M.
    Rajesh, I. S.
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND DATA SCIENCE, 2020, 167 : 57 - 66
  • [45] Data on OCT and fundus images for the detection of glaucoma
    Raja, Hina
    Akram, M. Usman
    Khawaja, Sajid Gul
    Arslan, Muhammad
    Ramzan, Aneeqa
    Nazir, Noman
    DATA IN BRIEF, 2020, 29
  • [46] Novel Features for Glaucoma Detection in Fundus Images
    Gonzalez Urquijo, Juan A.
    Sachez Fonseca, Jessica D.
    Lopez Lopez, Juan M.
    Cancino Suarez, Sandra
    PATTERN RECOGNITION (MCPR 2021), 2021, 12725 : 369 - 378
  • [47] Automatic Object Detection from Digital Images by Deep Learning with Transfer Learning
    Yabuki, Nobuyoshi
    Nishimura, Naoto
    Fukuda, Tomohiro
    ADVANCED COMPUTING STRATEGIES FOR ENGINEERING, PT I, 2018, 10863 : 3 - 15
  • [48] Deep Learning Methods for Glaucoma Identification Using Digital Fundus Images
    Virbukaite, Sandra
    Bernataviciene, Jolita
    BALTIC JOURNAL OF MODERN COMPUTING, 2020, 8 (04): : 520 - 530
  • [49] Automatic Detection of Diabetic Eye Disease Through Deep Learning Using Fundus Images: A Survey
    Sarki, Rubina
    Ahmed, Khandakar
    Wang, Hua
    Zhang, Yanchun
    IEEE ACCESS, 2020, 8 : 151133 - 151149
  • [50] A system for the automatic detection of glaucoma using retinal images
    Elaouaber, Zineb Aziza
    Lazouni, Mohamed El Amine
    Messadi, Mohamed
    2018 3RD INTERNATIONAL CONFERENCE ON PATTERN ANALYSIS AND INTELLIGENT SYSTEMS (PAIS), 2018, : 82 - 87