Deep Learning Methods for Glaucoma Identification Using Digital Fundus Images

被引:2
|
作者
Virbukaite, Sandra [1 ]
Bernataviciene, Jolita [1 ]
机构
[1] Vilnius Univ, Inst Data Sci & Digital Technol, Akad St 4, Vilnius, Lithuania
来源
BALTIC JOURNAL OF MODERN COMPUTING | 2020年 / 8卷 / 04期
关键词
Glaucoma; Fundus Images; Neural Networks;
D O I
10.22364/bjmc.2020.8.4.03
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this survey we analyzed the literature, evaluated the methods for glaucoma identification and identified the main issues faced by other researchers. From the literature it is observed that most of the computer aided diagnosis (CAD) tools for identification of pathological changes in eye fundus are in the early stage of development. The accuracy of glaucoma classification achieved by different methods ranges from 87.50% to 99.41%. However, the classification results are obtained with different data sets and different quality images. Therefore, the further research would be needed to create an algorithm using a data set contained of wider range and various quality images. Also, it is necessary to estimate the advantages and disadvantages of the existing methods and to compare the obtained classification results under the same conditions of experiments.
引用
收藏
页码:520 / 530
页数:11
相关论文
共 50 条
  • [1] Identification of glaucoma from fundus images using deep learning techniques
    Ajitha, S.
    Akkara, John D.
    Judy, M., V
    [J]. INDIAN JOURNAL OF OPHTHALMOLOGY, 2021, 69 (10) : 2702 - 2709
  • [2] Identification of clinically relevant glaucoma biomarkers on fundus images using deep learning
    Norouzifard, Mohammad
    Nemati, Ali
    Klette, Reinhard
    GholamHossieni, Hamid
    Nouri-Mahdavi, Kouros
    Yousefi, Siamak
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (11)
  • [3] An Automated Deep Learning Approach to Diagnose Glaucoma using Retinal Fundus Images
    Shoukat, Ayesha
    Akbar, Shahzad
    Hassan, Syed Al E.
    Rehman, Amjad
    Ayesha, Noor
    [J]. 2021 INTERNATIONAL CONFERENCE ON FRONTIERS OF INFORMATION TECHNOLOGY (FIT 2021), 2021, : 120 - 125
  • [4] Automated Diagnosis of Glaucoma Using Digital Fundus Images
    Jagadish Nayak
    Rajendra Acharya U.
    P. Subbanna Bhat
    Nakul Shetty
    Teik-Cheng Lim
    [J]. Journal of Medical Systems, 2009, 33
  • [5] Automatic Identification of Glaucoma Using Deep Learning Methods
    Cerentini, Allan
    Welfer, Daniel
    d'Ornellas, Marcos Cordeiro
    Pereira Haygert, Carlos Jesus
    Dotto, Gustavo Nogara
    [J]. MEDINFO 2017: PRECISION HEALTHCARE THROUGH INFORMATICS, 2017, 245 : 318 - 321
  • [6] Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images
    Raghavendra, U.
    Fujita, Hamido
    Bhandary, Sulatha V.
    Gudigar, Anjan
    Tan, Jen Hong
    Acharya, U. Rajendra
    [J]. INFORMATION SCIENCES, 2018, 441 : 41 - 49
  • [7] Automated Diagnosis of Glaucoma Using Digital Fundus Images
    Nayak, Jagadish
    Acharya, Rajendra U.
    Bhat, P. Subbanna
    Shetty, Nakul
    Lim, Teik-Cheng
    [J]. JOURNAL OF MEDICAL SYSTEMS, 2009, 33 (05) : 337 - 346
  • [8] Deep Learning Methods for Virus Identification from Digital Images
    Zhang, Luxin
    Yan, Wei Qi
    [J]. 2020 35TH INTERNATIONAL CONFERENCE ON IMAGE AND VISION COMPUTING NEW ZEALAND (IVCNZ), 2020,
  • [9] A Review of Glaucoma Detection from Digital Fundus Images using Machine Learning Techniques
    Stefan, Ana-Maria
    Paraschiv, Elena-Anca
    Ovreiu, Silvia
    Ovreiu, Elena
    [J]. 2020 INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING (EHB), 2020,
  • [10] An automatic recognition of glaucoma in fundus images using deep learning and random forest classifier
    Shanmugam, P.
    Raja, J.
    Pitchai, R.
    [J]. APPLIED SOFT COMPUTING, 2021, 109