Automatic glaucoma detection from fundus images using transfer learning

被引:6
|
作者
Patil, Rajeshwar [1 ]
Sharma, Sanjeev [1 ]
机构
[1] Indian Inst Informat Technol, Pune, India
关键词
Glaucoma classification; Computer vision; Transfer learning; Deep learning; NEURAL-NETWORK; DIAGNOSIS;
D O I
10.1007/s11042-024-18242-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Glaucoma is an eye disease that damages the optic nerve (or retina) and impairs vision. This disease can be prevented with regular checkups, but this increases the workload for professionals and the time it takes to get results. So an automated method using deep learning would be helpful for detection of disease. In order to shorten the diagnosis time for glaucoma, this paper proposed a deep learning based method for automatic glaucoma detection. The experiments are conducted on glaucoma datasets available on Kaggle. This paper used transfer learning based pretrained models namely DenseNet169, MobileNet, InceptionV3, Xception, ReseNet152V2,and VGG19. Among all models DenseNet169 gives best result with accuracy 0.993590 and precision and recall of 0.993671 and 0.9935895 respectively. A comparison of the best model results with existing work shows that the proposed model provides better results.
引用
收藏
页码:78207 / 78226
页数:20
相关论文
共 50 条
  • [21] Automatic Glaucoma Detection Method Applying a Statistical Approach to Fundus Images
    Septiarini, Anindita
    Khairina, Dyna M.
    Kridalaksana, Awang H.
    Hamdani, Hamdani
    HEALTHCARE INFORMATICS RESEARCH, 2018, 24 (01) : 53 - 60
  • [22] Glaucoma Detection in Retinal Fundus Images Based on Deep Transfer Learning and Fuzzy Aggregation Operators
    Ali, Mohammed Yousef Salem
    Jabreel, Mohammad
    Valls, Aida
    Baget, Marc
    Abdel-Nasser, Mohamed
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2023, 32 (02)
  • [23] Automated glaucoma detection from fundus images using wavelet-based denoising and machine learning
    Khan, Sibghatullah, I
    Choubey, Shruti Bhargava
    Choubey, Abhishek
    Bhatt, Abhishek
    Naishadhkumar, Pandya Vyomal
    Basha, Mohammed Mahaboob
    CONCURRENT ENGINEERING-RESEARCH AND APPLICATIONS, 2022, 30 (01): : 103 - 115
  • [24] Automatic detection of papilledema through fundus retinal images using deep learning
    Saba, Tanzila
    Akbar, Shahzad
    Kolivand, Hoshang
    Ali Bahaj, Saeed
    MICROSCOPY RESEARCH AND TECHNIQUE, 2021, 84 (12) : 3066 - 3077
  • [25] CNN with Multiple Inputs for Automatic Glaucoma Assessment Using Fundus Images
    Elmoufidi, Abdelali
    Skouta, Ayoub
    Jai-Andaloussi, Said
    Ouchetto, Ouail
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2023, 23 (01)
  • [26] CNNs for automatic glaucoma assessment using fundus images: an extensive validation
    Diaz-Pinto, Andres
    Morales, Sandra
    Naranjo, Valery
    Koehler, Thomas
    Mossi, Jose M.
    Navea, Amparo
    BIOMEDICAL ENGINEERING ONLINE, 2019, 18 (1)
  • [27] CNNs for automatic glaucoma assessment using fundus images: an extensive validation
    Andres Diaz-Pinto
    Sandra Morales
    Valery Naranjo
    Thomas Köhler
    Jose M. Mossi
    Amparo Navea
    BioMedical Engineering OnLine, 18
  • [28] Multi-task deep learning for glaucoma detection from color fundus images
    Pascal, Lucas
    Perdomo, Oscar J.
    Bost, Xavier
    Huet, Benoit
    Otalora, Sebastian
    Zuluaga, Maria A.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [29] Multi-task deep learning for glaucoma detection from color fundus images
    Lucas Pascal
    Oscar J. Perdomo
    Xavier Bost
    Benoit Huet
    Sebastian Otálora
    Maria A. Zuluaga
    Scientific Reports, 12
  • [30] Automatic Glaucoma Detection by Using Funduscopic Images
    Atheesan, S.
    Yashothara, S.
    PROCEEDINGS OF THE 2016 IEEE INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, SIGNAL PROCESSING AND NETWORKING (WISPNET), 2016, : 813 - 817