Partitioning the vertex set of a bipartite graph into complete bipartite subgraphs

被引:0
|
作者
Duginov, Oleg [1 ]
机构
[1] Natl Acad Sci, Inst Math, Dept Combinatorial Models & Algorithms, Minsk, BELARUS
关键词
bicliques; bipartite graph; computational complexity; partitioning problem;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Given a graph and a positive integer k, the biclique vertex-partition problem asks whether the vertex set of the graph can be partitioned into at most k bicliques (connected complete bipartite subgraphs). It is known that this problem is NP-complete for bipartite graphs. In this paper we investigate the computational complexity of this problem in special subclasses of bipartite graphs. We prove that the biclique vertex-partition problem is polynomially solvable for bipartite permutation graphs, bipartite distance-hereditary graphs; and that it remains NP-complete for perfect elimination bipartite graphs and bipartite graphs containing no 4-cycles as induced subgraphs.
引用
收藏
页码:203 / 214
页数:12
相关论文
共 50 条
  • [21] Vertex-bipancyclicity in a bipartite graph collection
    Hu, Jie
    Li, Luyi
    Li, Xueliang
    Xu, Ningyan
    DISCRETE MATHEMATICS, 2024, 347 (07)
  • [22] Complete bipartite graphs without small rainbow subgraphs
    Ma, Zhiqiang
    Mao, Yaping
    Schiermeyer, Ingo
    Wei, Meiqin
    DISCRETE APPLIED MATHEMATICS, 2024, 346 : 248 - 262
  • [23] COMPLETE SUBGRAPHS OF BIPARTITE GRAPHS AND APPLICATIONS TO TRACE LANGUAGES
    GUAIANA, G
    RESTIVO, A
    SALEMI, S
    RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1990, 24 (04): : 409 - 417
  • [24] Biclique cryptanalysis using balanced complete bipartite subgraphs
    Zheng GONG
    Shusheng LIU
    Yamin WEN
    Yiyuan LUO
    Weidong QIU
    Science China(Information Sciences), 2016, 59 (04) : 208 - 210
  • [25] Biclique cryptanalysis using balanced complete bipartite subgraphs
    Gong, Zheng
    Liu, Shusheng
    Wen, Yamin
    Luo, Yiyuan
    Qiu, Weidong
    SCIENCE CHINA-INFORMATION SCIENCES, 2016, 59 (04)
  • [26] Biclique cryptanalysis using balanced complete bipartite subgraphs
    Zheng Gong
    Shusheng Liu
    Yamin Wen
    Yiyuan Luo
    Weidong Qiu
    Science China Information Sciences, 2016, 59
  • [27] Partitioning the edge set of a bipartite graph into chain packings: complexity of some variations
    de Werra, D
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 368 : 315 - 327
  • [28] On the Equitable Vertex Arboricity of Complete Bipartite Graphs
    Mao, Yaping
    Guo, Zhiwei
    Zhao, Haixing
    Ye, Chengfu
    UTILITAS MATHEMATICA, 2016, 99 : 403 - 411
  • [29] On the Set of Stable Matchings in a Bipartite Graph
    Karzanov, A. V.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2023, 63 (08) : 1540 - 1556
  • [30] Orthogonal double cover of Complete Bipartite Graph by disjoint union of complete bipartite graphs
    El-Serafi, S.
    El-Shanawany, R.
    Shabana, H.
    AIN SHAMS ENGINEERING JOURNAL, 2015, 6 (02) : 657 - 660